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unzulässige fremde Hilfe unter Beachtung der “Grundsätze zur Sicherung guter wis-

senschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf” erstellt worden ist.
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Abstract

Entity resolution (ER) is the task of grouping entity mentions by the real-world object they

refer to. It is central to ordering and aggregating knowledge in the growing amount of available

structured, semi-structured and unstructured information. At its core, ER determines whether

the similarity between two entity representations is sufficient to indicate equivalence. From a

technical point of view, the most essential aspect is not how to compute this similarity, but how

to discover the most similar pairs efficiently. As it is infeasible to compare all mention pairs,

dedicated techniques must be used to structure or partition the search space. This is known

as similarity search. A simple approach is to establish a prior grouping based on selected key

features or combinations thereof. This is known as (hash-based) blocking and is limited in mod-

elling intransitive matching relationships. Alternative heuristics like alphabetical order can be

used to suggest mention pairs in the order of their approximated coreference likelihood. This

is known as progressive resolution. Progressive methods have focused on alphabetically sorting

string-based entity representations, which optimistically assumes that coreference likelihood can

be approximated as a total order. In this thesis, we suggest to partially order entity represen-

tations instead, as the subset partial order is better suited to model the matching relationships

between sets of features. A notion of neighborhood as has been previously defined for total or-

ders (e.g. alphabetical sorting) or continuous spaces (e.g. space partitioning) can also be defined

on partial orders and exploited for progressive resolution. In this thesis, we explore opportu-

nities of partially ordering entity mentions to develop a generalized set-based framework that

can be adapted to ER tasks such as progressive author disambiguation, hierarchical affiliation

resolution and large-scale duplicate detection. In a series of works, we have explored the topics

of clustering, blocking and progressive resolution in the context of author disambiguation. This

was followed by experiments with hierarchical resolution of affiliation strings and billion-scale

blocking for detecting duplicate publication records. In the process, a modular entity resolution

framework was refined that consists of the steps (1) representation, (2) specification, (3) general-

ization, (4) separation, (5) collocation and (6) conflation. Entity mentions are (1) represented as

sets of attribute-value pairs, which are in some cases (2) isolated by specification if they are not

informative enough. Further, (3) hypothetical representations are added by removing features

that are not required for blocking equivalence. The result corresponds to sufficient overlaps for

blocking equivalence. Then, (4) the representations are separated into super-blocks consisting

of representations that are somehow connected in the subset partial order, which is built ex-

plicitly in (5) collocation. Finally, (6) edge-weights based on observation counts can be used

in the partial order’s directed acyclic graph to progressively contract edges, thereby merging

nodes (blocks) to increase the size of clustering tasks. Each development step in the series of

publications related to this thesis has been evaluated on gold datasets for different application

scenarios in the domain of bibliographic data. Thereby, we have proven the practicability of

our approach, shown where it outperforms existing baselines and where current limitations call

for further research. The description of our works is complemented by a brief discussion of

each individual publication and embedded in the body of existing literature by an integrative

introduction and preliminaries chapter as well as a dedicated related work chapter. In the final

chapter, we conclude how we have been able to design a novel ER approach that is unique in

how it combines a number of beneficial properties in a modular and easily adaptable framework.

From a number of inherent limitations, we derive tasks for future work before summarizing our

contributions and how they have addressed gaps in the existing ER literature.
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Chapter 1

Introduction

Entity resolution (ER) is the task of grouping references or mentions of entities in

structured, semi-structured or unstructured data by the real-world object they refer to.

Popular examples are author mentions referring to real-world persons, metadata records

referring to publications or affiliation strings referring to institutions. ER allows to relate

all the information regarding a specific entity over a large amount of data. Thereby, it

is central to ordering and aggregating knowledge in the growing amount of information

available today. At its core, ER is about finding indicators of identity. In practical

terms, this is implemented as a similarity over the feature-based representations of entity

mentions. While the fine-tuning of such similarity measures is a respectable research

task, the most essential aspect of ER is certainly scale. In any larger collection, it is

infeasible to compare all pairs of entity mentions by a similarity measure. Therefore,

techniques have to be deployed that enable a prior structuring or partitioning of the

search space. This allows confining oneself to the most likely coreferences by retrieving

the most promising entity mention pairs for comparison without computing the entire

ranking of all pairs. A simple approach is to establish a disjoint or overlapping grouping

of all entity mentions based on selected key features or combinations thereof. This is

known as blocking. A more elaborate family of solutions aims at suggesting mention

pairs one-by-one (or in batches), following the order of their coreference likelihood. This

is referred to as progressive resolution or blocking and aims at obtaining the best possible

result for the invested resources. Due to a lack of alternatives, blocking is a necessity and

due to its superior usefulness, the idea of progressiveness is considered a guiding principle

in this thesis. In contrast to O(n2) pairwise comparison, the most basic blocking is

implemented as an O(n) labelling process that is based on one or more features and only

considers one mention at a time. Progressive methods have focused on (alphabetically)

sorting mentions in O(n log n) based on one or more features, which assumes a total

order of representations. Instead, in this thesis, we make a case for partially ordering

3
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representations, as in many cases – in particular when there are missing values in the

mentions’ representations – the subset partial order over set-based entity representations

is more appropriate than the alphabetical order over string-based representations. In

the directed acyclic graph of the partial order, measures of neighborhood can be defined

to find the most similar mention pairs without pairwise comparison. Generally speaking,

the goal of this thesis is to explore the opportunities and limitations of partially ordering

entity mentions in the ER context and to develop a generalized formalization to embed

our proposal into the existing range of methods for entity resolution and progressive

blocking. Specifically, our contribution is the introduction, integration, evaluation and

discussion of a novel, conceptually coherent framework for (progressive) entity resolution

that embraces a number of essential features and as such appears to be one of few openly

published methods – or even the only one – to combine in itself many of the benefits

attributed to these features.
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1.1 Motivation

There is no doubt that the amount of digital data, information or knowledge in the

world is growing at astonishing rates, given that there are more and more efficient

methods for content creation and recombination used by a growing number of people

with access to such means. This is complemented by machines that automatically copy,

extract, interpret and summarize from exiting data. In this context, one can argue that

the actual amount of essential facts is not growing at the same rate – and certainly,

data growth is accompanied by considerable redundancy. Hence, when making sense of

large datasets, for example by aggregations like ”Find me all the information concerning

company XYZ”, it is essential to resolve the varying references to this entity. This is

known as the entity resolution problem. Finding all references to a specific entity (a.k.a.

entity linking) allows to aggregate information about it. Resolving all references to any

entity in a collection allows to determine and distinguish which entities are mentioned

where. Performing such entity resolution over all kinds of entity types can be assumed

a prerequisite for determining general semantic overlap, in particular if one takes an

entity-centric approach to textual entailment.

1.1.1 The Impact of Entity Resolution

Since entity resolution has numerous specific applications across different domains (see

Table 1.1) and is essential to redundancy reduction and aggregation, it not far-fetched to

claim that it is a prerequisite for most large-scale data processing tasks. As a result of its

practical relevance, not all applications are harmless and for example must be expected

to play a significant role in global mass surveillance as revealed by contemporary whistle-

blowers like Edward Snowden:

And what’s more you can tag individuals using ”XKeyscore”. [...] I can

track your username on a website on a form somewhere, I can track your

real name, I can track associations with your friends and I can build what’s

called a fingerprint which is network activity unique to you which means

anywhere you go in the world anywhere you try to sort of hide your online

presence hide your identity, the NSA can find you and anyone who’s allowed

to use this or who the NSA shares their software with can do the same thing.

– Edward Snowden on XKeyscore1

1https://web.archive.org/web/20140128224439/http://www.ndr.de/ratgeber/netzwelt/

snowden277_page-3.html, retrieved 29.06.2021

https://web.archive.org/web/20140128224439/http://www.ndr.de/ratgeber/netzwelt/snowden277_page-3.html
https://web.archive.org/web/20140128224439/http://www.ndr.de/ratgeber/netzwelt/snowden277_page-3.html
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While the application of ER can have positive and negative consequences, it is certain

to have a considerable impact on the world today.

1.1.2 The Need for Scalability

A fundamental problem in ER is that even if the data is growing linearly over time,

the number of potential coreferring pairs is growing quadratically. Neither the com-

putational power of existing machines nor the amount of energy available to them can

keep up with a task that becomes unsustainably inefficient in comparison to the source

data size and the target knowledge gains. Given the increasing prevalence of ER in

various domains like management, analysis and surveillance, this efficiency problem also

has an impact on general sustainability and carbon emissions. While it acknowledges

that the global computing energy consumption remains flat due to economies of scale

in data centers, a recent International Energy Agency (IEA) report [3] also identifies

machine learning as an emerging technology that is likely to have an increasing impact

on computation energy demand.

1.1.3 A Cross-Domain Problem

Due to the number of different application domains and as a result of the many syn-

onyms for both the term “entity” and the term “resolution”, what we refer to as “entity

resolution” is also known under many other names. This manifests itself in all kinds of

compounds as indicated in Table 1.2. While not all noun-verb combinations in this table

are conventional (e.g. “record disambiguation” is not), a large number of them are used

in some contexts (e.g. “identity resolution” or “object identification”). Further terms

like “merge/purge processing”/“list washing” or “duplicate detection”/“deduplication”

Table 1.1: Different example applications by domains.

management
cleaning e.g. duplicate detection
customer relations e.g. personalization

analysis
real-time analysis e.g. trend analysis
general knowledge extraction e.g. knowledge graph learning
specific knowledge extraction e.g. question answering
verification e.g. fact checking

surveillance
intelligence e.g. counter-terrorism
compliance e.g. auditing
prosecution e.g. evidence compilation
prevention e.g. fraud detection
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exist, as pointed out in the Wikipedia article on “Record Linkage”2. The number of dif-

ferent terms for the task is likely to have contributed to a lack of communication across

domain boundaries, underlining the importance of a domain-independent approach that

can be adapted to any concrete task. Here, general means for inspection and visual-

ization are appreciated, as they are beneficial to the application of a general purpose

solution to individual scenarios by facilitating the necessary fine-tuning.

1.1.4 The Intricate Relationship of Matching and Equivalence

This thesis focuses on handling diverse references to the same entity. While entity

resolution generally embraces the assumption of resolving not only the most apparent

equivalences, but also finding more inconspicuous ones, few approaches model the actual

logical or world-knowledge-based relationships between individual references in terms of

matching or contradiction. For example John Doe vs. Jack Doe might be equally

similar as John Doe vs. J. H. Doe, but only the latter pair matches from a practical

point of view, while the first can be considered contradictory. This can be uncovered

when parsing the strings into sets of their essential components, in which case we see

that the first name John contradicts the first name Jack, while the first initial J is

shared by John Doe and J. H. Doe and the second initial H. can complement any first

name such as John. These relations are important as they express what can in principle

co-refer and what cannot (necessary conditions for equivalence). This constitutes a

first, binary approximation of the coreference likelihood that we would like to account

for when deciding actual coreference (sufficient conditions for equivalence). In their

fundamentality, matching-based necessary conditions allow a structuring of the search

space that provides means for avoiding the expenses of exhaustive pairwise comparison.

The central part of the work on this thesis was initially motivated by addressing obvious

inadequacies in the handling of matching author names by traditional blocking schemes

as well as observing and understanding the inherent incompatibility of the matching

relation and the equivalence relation.

2https://en.wikipedia.org/wiki/Record_linkage, retrieved 11.07.2021

Table 1.2: Analysis of various terms that are synonymous to ’entity resolution’.

INPUT-RELATED OUTPUT-RELATED
noun verb noun verb

record linkage object resolution
data matching entity identification
name disambiguation identity
reference reconciliation reference
information integration

https://en.wikipedia.org/wiki/Record_linkage
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1.2 Problem Statement and Objectives

In ER, we are presented with a set of entity mentions, each of which is represented by a

set of features. The task is to use those features to find groups of entity mentions that

refer to the same entity. An entity can be virtually anything, but often is considered a

real world person, institution or publication. Ultimately, equivalence of entity mentions

is based on some explicit or implicit inter-mention similarity. With an appropriate

definition of similarity, the most similar mentions can be considered coreferring. ER has

two sides. The first deals with determining an effective definition of similarity (often

with respect to a specific domain or even dataset). As the target output constitutes a

grouping of mentions, transitivity is required (if a is equivalent to b and b is equivalent

to c, then a must also be equivalent to c). This can be a blessing or a curse. The

blessing is that one can use multiple surrounding mentions to determine which group

a mention belongs to. Most clustering methods will exploit this information. The

curse is that transitivity can propagate errors, especially if the belonging to a group

is determined only based on one nearest neighbor (e.g. single-link clustering). The

second side of ER addresses the technical infeasibility of comparing all mention pairs to

obtain their similarity and decide coreference. While single-link clustering (or pairwise

classification with transitive closure) constitutes the cheapest clustering approach, more

effective clustering methods like agglomerative clustering require much more time and

even those are only approximations towards optimizing intra-cluster similarity and inter-

cluster dissimilarity. Therefore it is essential to avoid comparing mention pairs that are

clearly not co-referring. In other words, the task is to compare only mention pairs

that satisfy some necessary conditions for equivalence. This is usually referred to as

blocking. As previously indicated, in this work we consider the second side of ER to be

the essential problem since clustering methods are well studied and optimal similarity

measures are likely to vary between different domains and datasets.

To identify gaps in the existing body of literature on entity resolution, a number of

desirable properties of a useful ER solution have been summarized in Figure 1.1. To

the best of our knowledge, no approach has been described in the scientific literature

that incorporates all of them. The goal of this thesis is to develop such a method.

The solution should be straight-forward but not trivial and offer a novel and convenient

approach to ER that integrates and complements prior research in the field.
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technical

scaling adaptive

conceptual

comprehensive sound accessible

~1 billion records
progressiveness

avoid pairwise view
parallelizable
unsupervised

schema-aware or -agnostic
model missing values

model feature expressiveness
embrace world knowledge

generalize over other approaches
model transitivity

identify well-defined sub-problems

simple
modular

visualizable

Figure 1.1: Properties of a good ER method.

1.2.1 Scaling

A good ER method should find duplicates in a collection of up to 1 billion records

in a matter of days, given realistic hardware constraints. Generally speaking, modern

consumer hardware can compute billions of simple operations in a few minutes if the

information is retrieved instantly (from RAM). However, this requires very large primary

memory, which is not available in PCs or laptops. Indexed databases stored on large

solid-state drives can step in at this point, although it then becomes a matter of hours

not minutes. Independent of these I/O challenges, it is essential that the cost of each

of the above operations is decoupled from the input size. The bottom line is that the

billion-scale is technically not infeasible, but will inevitably expose any design mistakes.

Therefore, it is very practical to test an ER approach’s maturity. While there are a

few commercial applications that advertise resolution at such scale (e.g. Quantexa3

or Senzing4), almost all scientific publications on the matter settle for a few million

records as “large” cases.5 In addition, a strong ER method should allow for progressive

resolution, i.e. the continuous improvement of the output. It is common to assume

the improvement to be an increase in recall as a result of comparing more and more

pairs (ranked by coreference likelihood). While progressive ER is a growing field, to

this date, most approaches still do not embrace this extremely convenient paradigm

(cf. Papadakis et al. [1]). In our blocking approach, we avoid perspectives that

refer to pairwise comparisons, for example the notion of specifically determining the

similarity of two entity mentions or the notion of pruning pairs (e.g. Papadakis et al.

[6]). We try to implement our methods such that the respective task can be run in

parallel. This property has seen wide-spread adoption in the literature (e.g. Efthymiou

et al. [7], Altowim and Mehrotra [8]) – but it is important to note that parallelization

is no cure for quadratic complexity. By not assuming a supervised classification

task, we are relieved from requiring training data (although of course we still need

some annotated data for evaluation purposes). In addition to the problem of scaling

annotation, a classification scenario implicitly assumes pairwise comparison (classifying

pairs as co-referent or not), which can lead to problems in scaling an ER method’s

3https://www.quantexa.com/platform/entity-resolution/, retrieved 29.06.2021
4https://senzing.com, retrieved 29.06.2021
5Notable exceptions are Manku et al. [4] and Zhang et al. [5].

https://www.quantexa.com/platform/entity-resolution/
https://senzing.com
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application in terms of the processed collection size. Regardless of those problems, the

classification view on ER is still found frequently in the literature (e.g. Draisbach et al.

[9], Koumarelas et al. [10]).

1.2.2 Adaptivity

In order to adapt to all kinds of datasets from different domains, a versatile ER approach

should allow to include schema information in feature-representations, which es-

sentially constitutes the attribute-part of attribute-value pairs, but must also be able

to work without it. Although some literature [1, 11] creates the impression of a deeper

distinction between schema-aware and -unaware methods, the latter are in fact easily

derived from the first by removing or generalizing attributes. Our method must be

able to properly model missing values by distinguishing matching representations

of different information granularity from those with contradictory values. For example,

J. Doe lacks a value for the attribute ”first given name”, but is not contradictory to

John Doe, which has both a value for ”first initial” and ”first given name” – in other

words, a missing value does not contradict any values. Also, it is desirable that there

are options to weight features by their expressiveness, e.g. if two representations

share a rare feature, they are more likely to co-refer than if they share a frequent fea-

ture. This should be determined automatically so that it also helps the adaptability to

unknown datasets. The discriminatory power of individual features is essential to de-

termining a reliable similarity as it means distinguishing important from unimportant

differences. A useful guide for distinguishing relevant and irrelevant differences is world

knowledge. While it is not good if an approach requires world knowledge, the latter

can still be very useful if available. Therefore, an adaptable method should embrace

world knowledge without compromising general automatic adaptivity. Most existing

approaches either rely on such knowledge (these are usually works on specialised ER

like author disambiguation) or reject it altogether [12, 13].

1.2.3 Comprehensiveness

In addition to the features mentioned under “adaptivity”, a comprehensive approach

to ER should incorporate as many methods from prior work as possible. To

contextualize an approach and to enable better comparison, it is highly appreciated if it

can be defined within a framework that is general enough to encompass as many other

solutions as possible. Then, existing solutions are special cases invoked by certain hyper-

parameter choices rather than separate models. Often, seemingly high-level distinctions
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can be easily described as parameter-configurations of a single “master-method” (see

also soundness). We elaborate on this in the related work chapter.

1.2.4 Soundness

In this thesis, we strictly require transitivity (together with the more obvious reflexivity

and symmetry) of the extracted coreference information, that is a sound ER method

should ultimately return a partitioning (labelling) of the input records. It should

not return (partial) pairwise coreference information, where it is unknown whether a ≡

b ∧ b ≡ c ⇒ a ≡ c. The latter problem is likely to occur if one applies a classification

view to ER. The classifier decisions (and their evaluation) requires the transitive closure

to be applied afterwards [9, 14] (with consequences difficult to predict). Also, where

possible, one should describe sub-tasks by means of well-studied problems in

computer science (e.g. connected component search or nearest neighbor problem, etc.).

Generally speaking, there are two types of papers on ER methods: Those accessible to

the regular scientific software engineer (e.g. Papenbrock et al. [15]) are lacking in terms

of conceptual decomposition. The alternative is mathematically derived approaches

(e.g. Judson [16]) that focus on known problems and feature many theoretical proofs,

but are often hard to understand in terms of concrete implementation guidelines. In our

opinion, a middle course is desirable.

1.2.5 Accessibility

To foster reproducibility, reuse and advancement of a proposed method/prototype, it is

important that it can be understood as a conceptional framework and implementation

template rather than a blackbox of cryptic code. It is therefore important that the

underlying principles remains simple and modular. Modularity allows to view the

approach on different levels of detail and “zoom in” to a specific component without

having to consider what is happening in the others. This includes the distinction be-

tween blocking and clustering. While modularity is sometimes achieved on a technical

level (e.g. in Papadakis et al. [17]), this separation is then usually not along concep-

tional boundaries. As a result, different methods are implemented as black-box modules

instead of being instantiated by different parameter configurations in an overarching

conceptual framework. For error analysis and continuous improvement within the pa-

rameter and hyper-parameter space defined by our framework, it is important that our

method creates visualizations for specific ER scenarios. Although sometimes the-

oretical examples are displayed graphically in the literature (e.g. [7]), these are hardly



Chapter 1 Introduction

ever extracts from the real data, which suggests that no automatic visualization has

been implemented.

1.2.6 Further aspects

The following aspects are desirable, but could not be incorporated into this thesis due

to time constraints. Real-time ER does not assume a static collection of records in

which duplicates are to be found, but a dynamic one, that is over time, mentions are

added – and also removed. Ultimately, the update-based framework that addresses this

problem is the only realistic setup, especially in very large-scale cases, where complete re-

computation is very expensive. However it is also very complicated to properly model

transitivity in this context, in particular if one makes the realistic assumption that

removed items must be “forgotten” due to privacy legislation. Similarly, dynamically

adapting the input (especially in progressive scenarios) by feeding back each resolution

(merge) decision (e.g. by combining representations of mentions determined co-referent)

offers great promise. However, this too involves great challenges in transitivity and

increases the danger of error-propagation. For conceptual and mathematical simplicity,

order-invariance (i.e. the order of operations is irrelevant within each step) is desirable

as it allows dynamic modification without unexpected consequences, e.g. we can expect

that first adding and later removing an entity mention has the same effect as never

having added it in the first place.
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1.3 Publications and their Contributions

The main contribution of this thesis lies in the proposal of a novel integrated, formalized

and easily accessible solution with the properties discussed in the previous section. The

novelty lies on the one hand in the method used, but also in the entirety of its beneficial

properties. This thesis should describe one of the first openly published approaches that

combines these advantages and can be implemented and comprehended in a relatively

straightforward way due to its formal simplicity. The approach has been developed and

refined over the course of multiple publications, which are all attached to and discussed

in this thesis. In the following, we list and summarize the individual projects and

afterwards point out their individual contribution to the thesis:

1. Tobias Backes. Effective unsupervised author disambiguation with relative fre-

quencies. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital

Libraries (JCDL’18), pages 203–2126, Fort Worth, Texas, USA, 2018. ACM Press.

ISBN 978-1-4503-5178-2. doi: 10.1145/3197026.3197036. [18]

2. Tobias Backes. The impact of name-matching and blocking on author disam-

biguation. In Proceedings of the 27th ACM International Conference on Infor-

mation and Knowledge Management (CIKM’18), page 803–8127, New York, NY,

USA, 2018. Association for Computing Machinery. ISBN 9781450360142. doi:

10.1145/3269206.3271699 [19]

3. Tobias Backes and Stefan Dietze. Lattice-based progressive author disambigua-

tion. Information Systems8, 109:102056, 2022. ISSN 0306-4379. doi: 10.1016/

j.is.2022.102056. [20]

4. Tobias Backes, Daniel Hienert, and Stefan Dietze. Towards hierarchical affilia-

tion resolution: framework, baselines, dataset. International Journal on Digital

Libraries9, May 2022. ISSN 1432-1300. doi: 10.1007/s00799-022-00326-1. [21]

5. Tobias Backes and Stefan Dietze. Subset partial order components for blocking bil-

lion entities. Submitted to 49th International Conference on Very Large Databases

(VLDB).

The first two publications are single-author contributions where the research conceptu-

alization and execution was conducted completely independently. Likewise, most of the

6Full research paper.
7Full research paper.
8The journal published by Elsevier, not to be confused with Information Systems Journal by Wiley.
9Published by Springer.
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work for the other publications was done by the first author, incorporating suggestions

by the other authors regarding experimental design as well as their contributions to

the structure, writing and presentation of the manuscripts. In the fourth work, Daniel

Hienert has also contributed means for accessing the data and presenting the results on-

line. In addition, this work was partially motivated by a practical need for institutional

disambiguation within GESIS and funded by the respective DFG project “Scalable Dis-

ambiguation of Institutions for Web of Science”, the proposal for which was mostly

sketched by the first author as well.

1.3.1 Contributions: “Effective Unsupervised Author Disambiguation

with Relative Frequencies”

This work contributes an agglomerative clustering approach for author disambiguation

in the large-scale Web of Science, emphasizing the topic of evaluation, in the sense

that the clustering method is visualized as a process of precision and recall development

and in relation to trivial baselines. This allows to verify the plausibility of the perfor-

mance numbers and observe the true contribution of the proposed method. Doing so, it

incorporates the following desirable properties:

Scaling: parallelizable in that surname+all-initials blocks can be considered separate

jobs to be processed by a pool of workers ✓

Scaling: unsupervised with only one parameter (stopping criterion) to be tuned ✓

Adaptivity: model feature expressiveness through a probabilistic weighting ✓

Soundness: model transitivity by relying on clustering instead of pairwise classifi-

cation ✓

Soundness: identify well-defined sub-problems by using the basic agglomerative

clustering framework ✓

Accessibility: simple in that it can be described by a few probabilities, which are

implemented as simple matrix operations – mostly matrix multiplication ✓

Accessibility: visualizable as the clustering development can be visualized for in-

spection ✓

This work was conducted entirely independently.
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1.3.2 Contributions: “The Impact of Name-Matching and Blocking on

Author Disambiguation”

The contribution of this work focuses on blocking and name-matching in the context of

author disambiguation to address the shortcoming of the previous publication in that

this one only considered the surname, all-initials blocking scheme. It orders author

names of different completeness in a partial order to visualize their relationships. Some

name pairs are contradictory while others can potentially refer to the same person.

Existing blocking schemes as well as one novel method are implemented to operate on

this acyclic directed graph. Their effectiveness in the task of disambiguation is evaluated

and compared. This includes the general question of how much of a disambiguation

method’s performance can be attributed to name-based blocking alone. Doing so, it

incorporates the following desirable properties:

Scaling: avoid pairwise view as author mentions are directly sorted into the right

buckets depending on their name information ✓

Scaling: parallelizable in that mentions can be sorted into buckets based on surname,

first-initial so that further name-distinction falls into separate jobs ✓

Scaling: unsupervised in that the blocking methods do not require training data and

are mostly parameter-free ✓

Adaptivity: model missing values by the partial order of name representations.

Adaptivity: model feature expressiveness in a local context through the proposed

entropy-based method that considers the relative frequency of name-representation

compared to more general names ✓

Adaptivity: embrace world knowledge in the context of parsing name representa-

tions from the given strings ✓

Comprehensiveness: generalize over other approaches that can be implemented

in the partial order of name representations ✓

Soundness: model transitivity in the partial order of name representations.

Accessibility: simple in that it only builds the subset partial order over name repre-

sentations and isolates elements that satisfy certain criteria to implement blocking

schemes ✓

Accessibility: visualizable by plotting the partial order’s DAG for selected surname,

first-initial combinations ✓

This work was conducted entirely independently.
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1.3.3 Contributions: “Lattice-based Progressive Author Disambigua-

tion”

This work formalizes the relationships between different name-representations further

and advances the previously proposed entropy-based blocking scheme into a progressive

blocking method. Multiple ways of dynamically modifying edge weights in the block-

ing graph are compared to determine their effectiveness in terms of found duplicates

vs. compared author mentions. The method is completed by applying single-link and

agglomerative clustering (the latter taken from the first publication) to obtain an end-to-

end disambiguation system and evaluate its blocking and clustering performance. Doing

so, it incorporates the following desirable properties:

Scaling: progressiveness is introduced through iterative merging of name represen-

tations adjacent in the subset partial order of name representations ✓

Scaling: avoid pairwise comparisons in the blocking method itself, which are post-

poned to within-block clustering ✓

Scaling: parallelizable by considering surname+first-initial blocks as separate jobs,

i.e. “super-blocks”. Simultaneous parallel iterative progression across all super-

blocks was not implemented, although a deployed system must realize it ✓

Scaling: unsupervised blocking and unsupervised disambiguation ✓

Adaptivity: model missing values in the blocking method ✓

Adaptivity: model feature expressiveness locally in blocking and globally in dis-

ambiguation ✓

Adaptivity: embrace world knowledge in the name parsing ✓

Comprehensiveness: generalize over other approaches describing baselines in the

blocking framework as before, which now also allows for the definition of some pro-

gressive blocking baselines ✓

Soundness: model transitivity at all times by block merging and clustering ✓

Soundness: identify well-defined sub-problems in the new formalism, e.g. (semi-

) lattices, partial order production, edge contraction, graph minors, minimal span-

ning trees, transitive reduction, nearest neighbor search, discounting, association

rule learning, hierarchy of record partitions, etc ✓

Accessibility: simple and modular as it mostly consists of representation parsing,

partial order production, weight modification, edge-contraction, condensation and

(re-)clustering ✓
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Accessibility: visualizable through iteratively contracted directed acyclic graphs ✓

Conceptualisation and implementation of the approach and large parts of the writing

have been conducted independently. Co-authors contributed to the experimental setup,

writing, presentation and revision.

1.3.4 Contributions: “Towards Hierarchical Affiliation Resolution: Frame-

work, Baselines, Dataset”

This work is the most complex in the collection of publications associated with the thesis

as it introduces institutions as a new entity type and also considers the potential of the

blocking graph to go beyond an intermediate structure for obtaining comparison order

and towards an approximation of true institutional hierarchies. Due to its complexity,

this work is considered mainly an entry point for developing improved methods that

address the identified subtasks. A major aspect of general significance studied in this

context is to determine the super-blocks as previously set manually (surname+first-

initial), now automatically through minimal element or connected component search.

Doing so, it incorporates the following desirable properties:

Scaling: avoid pairwise formulations in this approach with the exception of a lim-

ited number of adjacent representations regarding merging decisions ✓

Scaling: parallelizable in minimal element search and the processing of the resulting

overlapping components through a pool of workers processing a queue of jobs ✓

Scaling: unsupervised without requiring training data ✓

Adaptivity: schema-aware or -unaware as the baseline implementation does actu-

ally not need to be schema-aware, but attributes seem to play an important role

for better conflation methods ✓

Adaptivity: model missing values as before ✓

Adaptivity: Embrace world knowledge in improved conflation methods and also

in representation parsing, which is much more difficult than for author names ✓

Comprehensiveness: generalize over other approaches as generic top-level res-

olution is a special case of this approach ✓

Soundness: models transitivity as by the anti-symmetry of the subset/superset par-

tial order, an affiliation can refer to separate top-level institutions without merging

them ✓
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Soundness: identify well-defined sub-problems by using connected component-

and minimal element search ✓

Accessibility: modular due to the increased complexity of the task, establishing the

separate subtasks of representation, interpolation, collocation, conflation and sep-

aration ✓

Accessibility: visualizable through visualizing the extracted institutional hierarchies

by plotting the underlying directed acyclic graph ✓

Conceptualisation and implementation of the approach and large parts of the writing

have been conducted largely independently. Co-authors contributed to the experimental

setup, writing, presentation and revisions. The second co-author also supported the

experimental implementation by providing input data and the presentation of the result

output.

1.3.5 Contributions: “Subset Partial Order Components for Blocking

Billion Entities”

This unpublished work focuses on the technical challenge of creating super-blocks through

parallellized minimal element- or connected component search with finite memory re-

sources. It provides a method for extremal set discovery in the superset partial order

without full partial order production (loading the graph into memory). Thereby, it con-

structs a bipartite graph that has the same connectivity as the full partial order but

is considerably smaller and facilitates connected component search to identify separate

super-blocks that are guaranteed to be unrelated. The method can also be used for

partial order production as it computes all superset relations on the fly. Doing so, it

incorporates the following desirable properties:

Scaling: 1 billion records can be processed on limited hardware by the implemen-

tation to find connected components. In fact the memory-runtime tradeoff can be

controlled to some extend.

Scaling: avoid pairwise formulations as that would be clearly infeasible ✓

Scaling: parallelizable as this is at the heart of the proposed algorithm ✓

Scaling: unsupervised and completely parameter-free and unsupervised ✓

Adaptivity: schema-aware or -unaware in the sense that representations can be

sets of both values and attribute-value pairs ✓
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Adaptivity: model missing values as before through the superset partial order ✓

Soundness: model transitivity as connectedness is transitive by definition ✓

Soundness: identify well-defined sub-problems by constructing a bipartite graph

with equal connectedness ✓

Accessibility: simple as the parallelization approach using ’batches and patches’ can

be visualized in two dimensions and deploys a standard job-based framework as

opposed to an existing recursive baseline ✓

Accessibility: modular with two modules: Finding the minimal elements and finding

connected components in it ✓

This work was conducted mostly independently, with the exception of some feedback

regarding experiments and the revisions to early manuscript drafts.



Chapter 1 Introduction

1.4 Structure of this Thesis

As summarized in Table 1.3, the remainder of this thesis is structured as follows: In

Chapter 2, we pursue an extended problem exploration trying to link the entity reso-

lution task and in particular the basic concepts involved in avoiding exhaustive pairwise

comparison to general fundamentals from mathematics and computer science. Then, we

present the latest version of our end-to-end entity resolution approach, which has been

developed over the years. In Chapter 3, we go into more detail describing individual

fundamental and current literature related to the problem of entity resolution. This is

meant to complement, not replace the related work sections of our separate publica-

tions. In Chapter 4, we explore clustering for entity resolution based on the example

of grouping author mentions into real-world author entities with a focus on developing

a useful similarity measure for mention-mention and cluster-cluster similarity in an ag-

glomerative clustering framework. In Chapter 5, we model the relationship between

matching and contradictory blocking representations based on the example of author

mentions in the Web of Science to shed a light on the distribution of name represen-

tations, their matching relationships and how it relates to different blocking schemes,

which are also compared performance-wise. In Chapter 6, we combine and refine the

insights and methods from the clustering paper (Chapter 4) and the blocking paper

(Chapter 5) to view the contribution of each task to the overall author disambiguation

performance. In this context, we embrace the notion of progressive resolution for au-

thor disambiguation and present the first such method. In Chapter 7, we experiment

with the use of the subset partial order of entity representations for describing hier-

archical relationships in the real world. The focus was on the application of previous

work around the subset partial order of blocking representations on institutions as a

new type of entities to disambiguate international affiliations. Hierarchical aspects de-

rive naturally from the subset partial order. In Chapter 8, we study the separation

problem, the task of creating super-blocks inside which progressive resolution can be

applied. The objective is to compute connected components in the subset partial order

of entity representations by relating every representation to its minimal element and

using this condensed representation to compute connected components. The focus of

this work is to identify options for balancing speed and space requirements to enable

fast search of connected components in the subset partial order over roughly one billion

representations of publication records from the CORE collection to find duplicates. In

Chapter 9, we conclude the work done in the context of this thesis by stating its main

results, summarizing the research process, deriving remaining questions for future work

and underlining our contributions to the field.
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Chapter 2

Preliminaries

In this chapter, we pursue a bottom-up process of problem exploration, where we derive

important characteristics by describing and addressing first the basic entity resolution

task and then consecutively all follow-up challenges and opportunities. We relate these

essential aspects to mathematical concepts and other fundamentals from different re-

search areas, without referring in detail to (recent) individual works (not to preempt

the literature review). As a result of this theoretical exercise, in the second part, we

present our approach for end-to-end entity resolution that has been developed over the

course of the five research projects which make up this thesis.

23
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2.1 Problem Exploration

In this section, we go back to first principles in order to provide a formal groundwork

for the methods proposed later. The basic problem setting is search for equivalent pairs

in a large set of elements that are each represented as a set of features. We touch upon

a number of different research fields and existing approaches where they are applicable.

In some cases, a deep exploration is not feasible. References to existing work are further

elaborated on in the related work chapter, where they are complemented by a description

of individual publications that summarize or establish the respective approaches.

2.1.1 Equivalence and equality

Generally speaking, the task of entity resolution is to establish a relation over a set

X, trivially by comparing all pairs x, x′ ∈ X × X. In our case, we are interested in

equivalence relations, which means that the target relation is transitive, symmetric and

reflexive. Let equivalence of two entity mentions be denoted as x ≡ x′ or eq(x, x′) = 1.

Equivalence is not the same as equality (x = x′). For example, we say two entity

mentions are equivalent if they refer to the same (equal) real world entity. No two

mentions are equal, but might have equal representations, where a representation is

a set or multi-set of features used to describe the mention. The equivalence relation

partitions X into equivalence classes. We must assume that any comparison technique

can only return an approximation of true equivalence and must be evaluated against a

gold standard of known equivalences to determine its degree of correctness.

2.1.2 Transitivity of partitioning

For better conceptualization, in this work, we assume that any resolution method must

return an equivalence relation, the crucial part being that it must satisfy transitivity and

thereby partition X. This cannot be taken for granted: an imperfect simple pairwise

comparison over X might fail to return such partitions, unless the transitive closure of

the so-discovered equivalences is taken. Taking the transitive closure over a set of pairs

detected as equivalent is the same as finding connected components in the undirected

graph over X that has an edge exactly for each of these pairs and can be done in O(n)

or even faster [22]. Instead of using a binary equivalence classifier followed by transitive

closure, one can also deploy methods that are in themselves guaranteed to partition the

search space, like most clustering algorithms.
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2.1.3 Categorization

Due to practical restrictions described earlier, the focus of this thesis and of many other

works is to avoid the quadratic complexity of going over all x, x′ ∈ X ×X to determine

their similarity or equality. As described above, there are two possible approaches to

entity resolution: (1) deploy an equivalence classifier or oracle and present it with a

limited number of pairs such that each mention occurs in at least one pair. Then perform

the transitive closure to translate the coreference information for these sampled pairs

into an approximative partitioning; (2) use a method that goes over elements x ∈ X

instead of pairs and on the fly creates in sub-quadratic time a structure (e.g. taxonomy)

from which the equivalence can be read of in sub-quadratic time. A simple instance of

such type of method is categorization with a complexity of O(n), where each x ∈ X is

put into a certain category (or disjoint block) using a hash function, blocking scheme

or categorization method b(x). A popular example is surname, first-initial blocks for

name-based person representations, which takes the name of a person and discards all

information except surname and first initial, then puts the mention into the respective

category if the latter already exists or else creates a new one with just the mention

in it. This approach is compelling as it is not required to compare all elements to find

that they belong together when togetherness is defined by categories. The categorization

baseline still leaves a number of problems, for example when the information present in a

mention’s representation is not sufficient to apply the distinction scheme implemented in

the taxonomy (e.g. there is no surname available, but the author mentions are sorted by

surname,first-initial) or the number of mentions sorted under a category grows beyond

measure (e.g. for Y. Wang). These examples show that it might be difficult to clearly

define b(x) without considering the categorized mention’s relationships. When only

considering individual mentions, b(x) is likely to suffer from a lack of adaption to the

collection as a whole. In other words, it is difficult to define mutually exclusive and

collectively exhaustive categories without comparing mentions to each other, especially

if the set of features is not fixed (i.e. we are trying to arrive at a general blocking

scheme that can be applied to unseen representations). In a flat taxonomy, it is difficult

to address volatile category sizes and differing information granularity.

2.1.4 Concept hierarchy; formal concept analysis

If a concept is defined by a set of features, then subsets correspond to generalizations of

the respective concept. This leads to a hierarchy, in which different levels of abstraction

exist. Every concept is described by a set of properties (its intensions). A sub-concept
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or specification adds at least one additional property to its super-concept or general-

ization. Hence the description of a specification is a superset of the description of its

generalization. As the properties required by a super-concept form a subset of those

required by one of its sub-concepts, the set of items that fit into the sub-concept (its ex-

tensions) is a superset of the sub-concepts extensions. Formal concept analysis (FCA)

builds a concept hierarchy over mentions x ∈ X represented as feature sets F ⊆ F .

Each hierarchy node (concept) is defined by a set of necessary features f ∈ F (its in-

tension F ∈ R ⊆ P(F)) and subsumes all elements with these features (its extension

X ⊆ X , X ∈ T ⊆ P(X )). Here, R is the set of all intensions F and T is the set of all

extensions X. Each sub-concept (specification) contains a subset X ′ ⊆ X of the exten-

sion defined by a superset F ′ ⊇ F of the intension. The relationship between intension

and extension is formalized as an antitone Galois connection. Given a set of features F ,

for an element x, we define its representation

R(x) = {f ∈ F | x has feature f}

Given a set of elements X , for a feature f we define its represented elements

R(f) = {x ∈ X | x has feature f}

as inverted index. If X is a subset of X , then σ(X) denotes the set of common features:

σ(X) =
⋂

x∈X

R(x)

Correspondingly, for a subset F of features from F , we define the set

τ(F ) =
⋂

f∈F

R(f)

of all elements x that have all features in F . σ(X) and τ(F ) are called the derivatives

of X and F . The functions σ and τ are called derivative operators and define an

antitone Galois connection between the power set lattice of the extensions and that

of the intensions. An antitone Galois connection is a pair σ, τ of antitone mappings

σ : T → R, τ : R → T with extensive compositions στ , τσ between two partially ordered

sets (T ,≤), (R,≤). Mappings στ ,τσ are extensive if X ≤ τσ(X), F ≤ στ(F ) for all

X ∈ T , F ∈ R respectively.



Chapter 2 Preliminaries 27

2.1.5 Partial orders; lattices

A partially ordered set is a set ordered by a reflexive, antisymmetric and transitive

binary relation ≤. In this work, we specifically use the subset/superset partial order

over feature representations R(x) of entity mentions x. Here, τ(R(x)) =
⋂

f∈R(x) R(f)

is the set of all entity mentions x′ that have representations R(x′) which are equal to

or specifications of R(x). The subset partial order over the power set P(F) defines a

lattice. In a lattice, every two elements have a unique supremum or join and a unique

infimum or meet. If (R,≤) is a partially ordered set, and R′ ⊆ R is an arbitrary subset,

then a representation F ∈ R is an upper bound of R′ if F ′ ≤ F for each F ′ ∈ R′. An

upper bound F is a supremum if F ≤ F ′′ for each upper bound F ′′ of R′. A set can

have at most one supremum. A representation F ∈ R is a lower bound of R′ if F ′ ≥ F

for each F ′ ∈ R′. A lower bound F is an infimum if F ≥ F ′′ for each lower bound F ′′ of

R′. A set can have at most one infimum. A partial order with only a supremum forms

a join-semilattice and one with only an infimum forms a meet-semilattice.

2.1.6 Directed acyclic graphs; association rule learning

If we build the subset partial order (R,⊆) over all observed representations R(x) of

entity mentions x, it is likely that among them there is none that qualifies as supremum

or infimum. A partial order with neither join nor meet is not a lattice nor semi-lattice.

However, all partial orders correspond to a directed acyclic graph (DAG) and partially

ordered sets are commonly visualized by a Hasse diagram which is a drawing of the

transitive reduction of this graph. A transitive reduction of a directed graph D is a

directed graph with the same nodes and a smallest possible subset of its edges such

that there is still for each pair of nodes a path where there was a path in the original

graph. A graph can have multiple transitive reductions. [23] Correspondences between

the graph view and the relation view include the weakly connected components of a

DAG corresponding to the equivalence classes of the partial order’s symmetric closure1.

An application that works on the above DAG is association rule learning, in which

strong connections or correlations (associations) between elements of the subset partial

order over so-called itemsets are discovered with the help of edge weights like confidence,

where the latter is similar to the transition probabilities introduced later in our work.

However the classic application scenario of ARL is not entity resolution, but shopping

basket analysis, where the task is to predict missing items in a shopping basket.

1The symmetric closure is obtained by adding (F ′, F ) for each pair (F, F ′)
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2.1.7 Necessity and sufficiency for equivalence

In order to analyze methods that reduce the number of comparisons, it is useful to

distinguish necessary and sufficient conditions for equality. Thereby, we distinguish

opposite ends of the coreference likelihood scale: A pair that does not satisfy necessary

conditions for equality is assumed not to be equivalent. A pair that satisfies sufficient

conditions for equality is assumed to be equivalent. Some conditions are both necessary

and sufficient. All pairs that satisfy sufficient conditions for equality also satisfy the

necessary conditions. This does not mean that the sufficient conditions itself are also

necessary. For example, one might consider two mentions having the same email address

as sufficient evidence for them referring to the same person, but this is not necessary, as

one person can also have different email addresses. Each of the two types of conditions

can be visualized as a border around the space of pairs that satisfy them. Hence in

this image, overlapping borders signify conditions that are both necessary and sufficient

and overlapping areas signify pairs that satisfy both necessary and sufficient conditions

(as stated above, there is no area that is surrounded by sufficient conditions but not by

necessary conditions). The gray area in between where necessary conditions are satisfied

but sufficient are not, is subject to further investigation. While necessary conditions can

be used to define blocks, sufficient conditions are ultimately defined in the clustering

or pairwise classification step. In blocking, if the satisfaction of necessary conditions

for equivalence can be ruled out a priori (i.e. two mentions are contradictory), two

mentions should be placed in separate blocks. During clustering, if sufficient evidence

for equivalence is found, two mentions should be placed in the same cluster. We will

see that the transitive closure that is required on these relations in order to obtain

disjoint partitions is likely to include some contradictory pairs in the same block. The

same “problem” can apply during clustering, where the transitive closure includes pairs

that are not sufficiently similar in the same cluster. For example J. Doe needs to be

in the same block with Jack Doe and John Doe, but that means contradictory John

and Jack are in the same block. The reason is a lack of information regarding J. Doe.

On the other hand some mention x might be sufficiently similar to another mention

x′, and the latter sufficiently similar to another x′′, but x′ and x′′ might not be that

similar. Essentially this is the same problem in both cases, only that in blocking, here

we assume a Boolean similarity of “matching” and in clustering a continuous similarity

like (inverted) Euclidean distance or cosine similarity.
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2.1.8 Rough sets

The problem of necessary and sufficient conditions of mention equivalence can also be

described in the context of rough sets. If we have our set X of entity mentions and

our set of features F , each f ∈ F belongs to some feature-type or attribute a ∈ A,

so that each feature is actually an attribute-value pair f = (a, v), where v ∈ V is a

value that attribute a can take. This corresponds to a database or information system

table giving zero or one value v for each mention x (row) and attribute a (column). If

one mention can have multiple values for the same attribute, theoretically this can be

achieved by a Boolean table where each column is a possible pair of attribute and value

that is either present (v = 1) or not (v = 0). For any subset A ⊆ A of attributes,

there is a possibly empty subset IND(A) = {(x, x′) ∈ X × X | ∀a ∈ A : a(x) = a(x′)}

with all mention pairs (x, x′) that have the same value a(x) = a(x′) for all attributes

a ∈ A and can therefore be considered equivalent based on the selection of attributes

A. For example A could be {surname, firstinit} of a person x and then we consider

all persons equivalent if they have the same surname and first initial. As IND(A) is

an equivalence relation, which by definition creates equivalence classes over X , this also

partitions X into subsets X assigning each x ∈ X to its equivalence class [x]A by simply

combining its values v ∈ {a(x) | a ∈ A}. If we assume that we know the true equivalence

classes E ∈ E , i.e. which mentions refer to the same real-world entities, we may study

to which degree we can approximate these true equivalences by means of the attributes

A. As the “resolution” of these attributes is usually not perfect (e.g if we have only

name-information available, there might be different persons with the same name or

the same person goes by different names), our target sets most E cannot be described

exactly. For this reason, each E is approximated by a rough set, which uses the notion

of upper- and lower approximation. The lower approximation

L(E) = {x ∈ E | [x]A ⊆ E}

is the set of all mentions x that can be grouped by the attributes A such that they are

all in our target E. Over all E ∈ E , the lower approximations correspond to all mentions

that satisfy sufficient conditions for equality defined by our “vocabulary” A. The upper

approximation

U(E) = {x ∈ E | [x]A ∩ E ̸= {}}

is the set of all mentions that IND(A) groups with mentions in E, which can also include

mentions outside of E that are indiscernible to those inside. Over all E ∈ E , the upper

approximations correspond to all mentions that satisfy necessary conditions for equality

defined by our vocabulary A. In the first step of representing mentions, we chose a set of
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attributes and so on this level equivalence classes defined by these attributes correspond

to representations, each of which can represent multiple indiscernible mentions if we

consider the empty value (e.g. NULL) to be a value like any other. Accounting for

missing information (i.e. using NULL as a placeholder), all supersets are indiscernible

from their subsets, which creates much larger equivalence classes, of which more later.

In the application domain of rough sets, usually the target sets E are classes in a

classification scenario and a classifier consists of a set of rules made up from the optimal

set A of attributes and a mapping saying which shared values correspond to which

classes. The target sets are annotated data and to allow for generalization towards

unseen data, the set of rules is reduced by various techniques. This however is not

directly applicable to entity resolution.

2.1.9 Bounds in continuous space

In a continuous space, two elements x, x′ can be assumed equivalent if they are suf-

ficiently close, i.e. dist(x, x′) ≤ tlower, where tlower is a lower bound on {dist(x, x′) :

x, x′ ∈ X × X ∧ x ≡ x′}. For x and x′ to be sufficiently close, we define it neces-

sary that dist(x, x′) ≤ tupper with tupper ≥ tlower, where tupper is an upper bound on

{dist(x, x′) : x, x′ ∈ X × X ∧ dist(x, x′) ≤ tlower}. So all distances considered suffi-

cient (≤ tlower) to indicate equivalence of pairs (x, x′) are lower than an upper bound

tupper. There are probably pairs with distances greater than tlower and lower than tupper

that are also equivalent. Only if we find a tight upper bound or supremum t′upper, can

we say that all equivalent pairs have a distance below t′upper (perfect precision) and all

non-equivalent pairs have a distance of more than t′upper (perfect recall). As in most

binary classification scenarios, it can be assumed that such a bound does either not

exist or constitutes an unpractical and over-fitted decision boundary. Essentially, the

goal of blocking is to find an upper bound that is as tight as possible (i.e. it is not tight,

but close to this state) while being reasonably cheap to find. In other words, we are

balancing tightness of a bound with the cost of finding it. Informally, we can assume

that the more relaxed the bound (or necessary condition for equivalence) is, the easier it

is to obtain. For example with a distance function that is known to always return values

above what is considered sufficient for equivalence if surname is different, categorizing

by surname is a cheap way to obtain an upper bound. Here having the same surname

is a necessary condition for equivalence.

It is important to remember that we cannot obtain the bound from looking at all pairs

of mentions as there are n2 pairs for n mentions. Therefore, in a continuous space, it

seems desirable to introduce a blocking by partitioning the space such that no pair closer

than tupper is in different partitions. However, there might be just one partition if there
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is no proper separation with respect to our bound tupper. This is the same as connecting

all points that are closer than or equal tupper. Then, a k-nearest-neighbor classifier with

k = 1 can be used to map new points to the partition that they are closest to. The

space partitioning would then be the Voronoi-cells of the “training”-data. However such

a new point y could actually be close enough to two points x, x′ from different partitions

(dist(y, x) ≤ tupper ∧ dist(y, x′) ≤ tupper) and thereby connect these or it could be far

enough from any point (dist(y, x) ≥ tupper∀x ∈ X) so that it would make for a new

partition. In any case, some data is required to obtain the partitioning and the kNN -

classifier is not cheap either. If it is possible to define the partitions in terms of limits

on the space’s dimensions, we can order each new point into the partitioning without

any comparison to other points by simply looking at its feature vector. This amounts

to a range-tree or k-d-tree data structure for the space. Still, the ranges would have to

be determined based on some existing data. We can use Boolean forms like

(d1 = 2 ∨ d1 = 3) ∧ (d2 = 1 ∨ d2 = 2)

to define areas in this space that contain possibly equivalent mentions. How exactly

these areas are found is not specified at this point (consider DNF/CNF-learning [24–

28]), but all mentions can be sorted into their area or category in linear time by using

the Boolean forms as a pointer to the respective category. Many works in clustering

define bounds in continuous spaces by nearest neighbor search [29–31], meaning that for

each mention we want to find its nearest neighbors in the clustering space (obviously

without enumerating all pairs). Means for efficient nearest neighbor search usually

involve some kind of space partitioning algorithm (see above) where the length of the

longest line within a partition is an upper bound on the distance between two equivalent

mentions. We might search for bounds on all dimensions (or blocking keys) separately

- or combinations thereof. In a continuous space of mention pairs, sufficient conditions

define a hypersphere inside which all pairs are equivalent so that its diameter is a lower

bound on the distance between non-equivalent mentions. This set is fully contained in a

larger hypersphere defined by the necessary conditions of equality so that its diameter is

an upper bound on the distance between equivalent mentions. An example for a space-

partitioning method used in k-nearest neighbor search is the ball tree or its generalization,

the M-tree. These algorithms require a distance metric between mentions and usually

assume continuous data, but in this work, we assume categorical data.

2.1.10 Bounds in partial vs. total orders

One way to include information about other related mentions into the similarity measure

is to prohibit measuring the linear distance between one mention and another (as in
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the usual distance measures) and only allow taking a path of observed closely related

mentions. For example if we have three mentions represented as {a}, {a, b} and {a, c},

L1 distance between {a, b} and {a, c} is 1 as they are differing by one feature. However,

using the subset partial order, one would have to go via {a} to get from {a, b} to

{a, c}. If there were no {a} then the distance would be infinite (the similarity being

zero). Alternatively, we insist that the subset relation holds in only one direction, hence

even with {a} present, there is no path from {a, b} to {a, c}. Finally, even if {a} is

present and we allow both directions, we could use edit distance to model that deletion

costs extra, so the path length becomes 2. Upper bounds on this distance measure

correspond to lower bounds in the subset partial order. This structuring implicitly

considers density since in a densely populated area, it is more likely that there exists a

(short) path in the subset relation. It is related to a nearest neighbor graph (NNG) and

the Euclidean minimal spanning tree (EMST ) in the case of a Euclidean space. This also

structures the search space in a way that can be used to reduce the time complexity of

(approximate) nearest neighbor search, where it is important to consider not the lattice

of all possible subsets but the partial order (that is probably not a (semi-)lattice) over

observed representations (i.e. the difference between FCA and ARL). As will be shown

later, paths can be additionally weighted by a function of the involved edges.

In this work, we use edge weights in the subset/superset partial order as similarities. In

the simplest case, these denote the cardinality difference between any two sets that are

in the subset relation. In a more advanced setting, we use the observation frequencies of

the representations in a measure similar to confidence in association rule learning. For

the first case, we can define the dissimilarity between two sets a, b as

d(a, b) = |(a ∪ b) \ (a ∩ b)|

which satisfies the requirements for a distance metric for pairs of representations that

are in the subset relation:

1. symmetry: d(a, b) = d(b, a)

2. non-negativeness: d(a, b) ≥ 0 ∧ d(a, a) = 0

3. positiveness: d(a, b) = 0 → a = b

4. triangle inequality: d(a, b) ≤ d(a, c) + d(c, b)

Specifically if a, b are not in the subset relation, then there is a supremum c = a ∪ b

s.t. d(a, b) = d(a, c) + d(c, b). Like in any distance metric, the triangle inequality
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amounts to d(a, b) = d(a, c) + d(c, b) if c lies on the shortest path between a and b. In

a Euclidean space, this amounts to the line between a and b. In a partially ordered

space, this is the case if a ⊆ c ⊆ b ∨ a ⊇ c ⊇ b. In the Euclidean space |{c ∈ U :

d(a, c ≤ d(a, b) ≥ d(c, b))}| = ∞, but in the subset partial order there are only a finite

number of c, in practical examples often very few. For example between a = {1, 2, 3}

and b = {1, 2, 3, 4, 5} is only c = {1, 2, 3, 4}. Therefore, the likelihood of observing

representations that are exactly between two other representations is quite high and

allows to structure the search space in a way that we can describe the distances between

the representations by a subset of R×R – in this example a, b, c by only two numbers

d(a, c), d(c, b). Since we are only interested in the most similar representations and we

know that by the triangle inequality the indirect paths are longer than the ones for

which we have explicit values, we do not need to consider the first ones.

For the second case, we define the observation count #(a) as the number of times

a representation a is observed and the carry count #̆(a) as the number of times the

representation a or a subset of it is observed, i.e. #̆(a) =
∑

b⊇a #(b). Then we define

the factor

d(a, b) =
#̆(b)

#̆(a)

Like the subset relation, these distances are not symmetric and only defined in one

direction. However, as they are ultimately used to merge neighboring nodes, the effect

is symmetric, and so we can create the symmetric closure by simply using the same

similarity in the opposite direction so that here d(b, a) = #̆(b)

#̆(a)
. Using the common

practice to replace
∏

d(a, b) by −
∑

log d(a, b), these are also non-negative ( #̆(a)

#̆(a)
= 1),

positive and satisfy the triangle inequality.

In addition, we define

s(a) =
#(a)

#̆(a)

to multiply with our distance metric factor d(a, b) and obtain a probability:

p(b|a) = d(a, b) · s(b) =
#(b)

#̆(a)
⇒ s(a) = p(a|a)

so that 1 ≥ p(a|a) = 1 · s(a) and
∑

b p(b|a) = 1. There may be b such that p(b|a) = 0

(not reachable). This can be read as the probability that an observed representation

a actually has the true form b, only that some information is missing. The other way

around is not possible (p(a|b) > 0 ⇒ p(a|b) = 0) as we do not assume that information

has been erroneously added.
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In addition, we define a different conditional probability distribution that uses the prob-

ability mass attributed to “indirect” paths in p(a|b) to only “direct” paths and allows

to factorize the indirect paths:

p̂(b|a) =















s(a), if a = b

d(a, b), if b ⊂ a ∧ ¬∃c : b ⊂ c ⊂ a

0, otherwise















Again, 1 ≥ p̂(a|a) and
∑

b p̂(b|a) = 1. If b ⊂ c ⊂ a, then p(b|a) = p̂(c|a) · p̂(b|c):

p(b|a) = ✟
✟
✟✟

#̆(R2)

#̆(R1)
·

✟
✟

✟✟
#̆(R2)

· . . . ·
#̆(

✟
✟✟Rn−1)

·
#̆(Rn)

✘✘✘✘✘
#̆(Rn−1)

Finally, we say the probability that two representations a, b are equivalent is

p(a ≡ b) =
∑

sup∈sups(a)∩sups(b)

p(sup|a) · p(sup|b) = p(≡ |a, b) ⇒ p(✚✚≡|a, b) = 1 − p(≡ |a, b)

where sups(a) denotes the (possibly empty) set of suprema sup ⊆ R of a and the

conditionals p(sup|a), p(sup|b) are computed as defined above. Regardless of these exact

probabilities, the distances − log d(a, b) or similarities d(a, b) always give the closest pairs

of representations.

d(a, b) ≥ d(a, c) ⇒ p(b ≡ a) ≥ p(c ≡ a)

max(p(a|b), p(b|a)) ≥ max(p(a|c), p(c|a)) ⇒ p(b ≡ a) ≥ p(c ≡ a)

max(p̂(a|b), p̂(b|a)) ≥ max(p̂(a|c), p̂(c|a)) ⇒ p(b ≡ a) ≥ p(c ≡ a)

Therefore we can use the transitive reduction over the subset partial order to obtain

a minimal set of values required for deriving all other distances or probabilities. This

trick is at the core of our proposed approach.

2.1.11 More correspondences

It seems obvious that both the concept of nearest neighbor search with space partition-

ing techniques like the ball-tree and the concept of rough sets with its concept of upper-

and lower approximations can be formalized in the context of mathematical topology

by finding correspondences to neighborhood, open- and closed sets, etc. In particular, as

there are also partially ordered spaces in topology, it should be possible to embed the

subset partial order of mention representations into a partially ordered space with the

appropriate edit distance and/or the edge weights described later being used to define

neighborhood and/or distance. Describing the task of entity resolution as a topological
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problem might allow to use insights from topology and its application domains specif-

ically for the advancement of ER. Unfortunately, due to the required background in

topology, we cannot follow this path further in this work.

In our work, we are concerned with at least two levels of equivalence: (1) representation

equivalence, (2) mention equivalence and possibly also (3) feature equivalence. In addi-

tion, in the context of progressive blocking and agglomerative clustering, the extend of

equivalence classes on each of these levels is iteratively increased. This makes it possible

to view the problem – or rather its solution – as an instance of what is known as granular

computing, i.e. any means that looks at data on multiple levels of resolution to select

only the information granularity that is necessary and sufficient to represent or extract

the knowledge in focus.

In constraint clustering, one extends normal clustering by must- and cannot-link con-

straints, where must-links correspond to mention pairs that meet sufficient conditions

for equivalence and cannot-links correspond to mention pairs that do not meet necessary

conditions. This means that must-links are expected to link only mentions in the lower

approximation of one cluster when using the rough set terminology. Likewise, cannot-

links would be useful if they refer to pairs in the upper approximation of a cluster, telling

us that we might want to consider further attributes to distinguish them as unrelated.

However, constraint clustering is very expensive [32] and therefore does not provide a

solution for efficient entity resolution.

In the rough set framework, we can define our target set E by Boolean combination of

attributes in disjunctive normal form (DNF), e.g. of a, b, c, d, e ∈ A like so:

(a ∧ b ∧ c) ∨ (d ∧ e)

Then E is the union of the upper set of the attribute set A1 = {a, b, c} and the upper set

of A2 = {d, e}. However E is not definable by a single set of attributes, so that the upper

approximation is A1 ∩A2 = {} and the lower approximation is A1 ∪A2 = {a, b, c, d, e},

that is all the mentions that share the values in the respective attributes. If the Boolean

formula is given in conjunctive normal form (CNF), it can be transformed into DNF

based on the rules of logical equivalences. Even though target sets (e.g. blocks) described

by such Boolean formulas cannot be defined exactly by a single set of attributes (e.g.

an entity representation), methods have been proposed to learn CNF or DNF formulas

to describe target classes or clusters [24–28]).

Rough sets, FCA and ARL are strongly connected. The set of “definable” attribute

subsets is a lattice over the power set of attributes that is closed under union, intersection
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and complement. Then the lower approximation of a target set is the greatest lower

bound and the upper approximation is the least upper bound.
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2.2 Proposed formalized solution

In the following we summarize and preview the findings of our individual studies in a

formalized framework for integrated blocking and (progressive) block-processing. We

have identified the following main components that are arranged in a pipeline and all

work on the same overarching structure defined by the subset partial order over mention

representations:

1. Representation: create sets of features to represent the different entity mentions

2. Specification: add additional features to representations that are determined

overly general

3. Generalization / Interpolation: add unobserved generalizations of observed

representations to increase connectivity where desired.

4. Separation: discover independent components of the representation space to re-

duce the complexity of downstream tasks.

5. Collocation: order the representations of each independent component by the

subset partial order.

6. Progressive Merging / Conflation: merge blocks represented by adjacent

blocks and create a graph minor through edge contraction.

7. (Within-Block) Clustering / Verification: cluster any blocks that have not

been clustered yet, including new ones created by merges.

This framework constitutes the main contribution of this thesis as it addresses the

requirements from Chapter 1.2 and thereby answers the research question of how a

single conceptually sound model can satisfy them.

Figure 2.1 abstracts from the different steps listed above. The weakly connected compo-

nents in the subset partial order create a partitioning equivalence relation (super-blocks)

that is used as a necessary condition for equivalence. Within each super-block, we build

the subset relation, which is antisymmetric. When contracting edges, we add the reverse

to the relation (“selective symmetry”). The result is considered sufficient to determine

which representations are in principle reachable from each other (can be merged). Reach-

ability is necessary for two representations ending up in the same strongly connected

component, which is a result of the additional reversed edges added. The strongly con-

nected components define another equivalence relation. Condensation is performed to

merge the respective groups of representations and the corresponding nodes in the graph.
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Being in the same representation (after merging) is considered necessary and sufficient

for representation equivalence, which in turn is necessary for a high mention similarity.

In the clustering step, highly similar mention pairs within each block define a reflexive,

symmetric but intransitive relation. The transitive closure implicitly or explicitly adds

additional edges so that mention reachability is enhanced to be an equivalence relation.

This is in considered necessary and sufficient for mention equivalence, which is what

we were looking for in the first place. On the right, the same concepts are visualized

with a focus on what is not connected in the different steps: (1) two separate weakly

connected components; (2) two representations that are not in the subset relation; (3)

two representations that are in the same weakly connected component, but not in the

same strongly connected component. (4) two mentions that are connected by mention

reachability because of the transitive closure, but not similar; (5) two mentions that

are in the same strongly connected component (block) but not in the same cluster as

they are not reachable via mention-reachability (neither similar nor connected through

transitive closure over similarity).

2.2.1 Representation

Each entity mention is represented by a set of features. It is assumed that each feature

is an attribute-value pair, however it can be any kind of feature, e.g. character-ngrams.

We distinguish blocking features and clustering features. When we refer to a mention’s

representation, we mean its blocking features. The clustering features can be a superset

of the blocking features or completely different. An entity mention’s representation is

obtained from whichever information is available for the mention, for example by parsing

an author name or affiliation string into labelled parts or by extracting features such

as character n-grams from the title field of a publication record. Multiple mentions can

have the same representation. Representation similarity is assumed to correlate with

coreference likelihood, which is why mentions should be compared based on the similarity

of their representations. Mention-pairs with more similar representations should be

compared before mention-pairs with less similar representations. Hence, mentions with

equal representations will be compared first.

2.2.2 Specification

Sometimes the information available for a mention is insufficient for distinguishing it

from other mentions. For example, an author mention might only be specified by a sur-

name without any first name information or an affiliation string is incorrectly parsed as

{(Univ, Clin)} or a publication record is almost empty. The respective representations



Chapter 2 Preliminaries 39

REPRESENTATION LEVEL

MENTION LEVEL

subset
relation

-reflexive
-antisymmetric
-transitive

additional
edges

selective
symmetry

representation
reachability

-reflexive
-nonsymmetric
-transitive

  sufficient

weakly
connected

-reflexive
-symmetric
-transitive

  necessary

strongly
connected

-reflexive
-symmetric
-transitive

representation
equivalence

-reflexive
-symmetric
-transitive

  necessary + sufficient

  necessary

high
similarity

-reflexive
-symmetric
-intransitive

  necessary

additional
edges

transitive
closure

mention
reachability
-reflexive
-symmetric
-transitive

  sufficient

mention
equivalence
-reflexive
-symmetric
-transitive

  necessary + sufficient

weakly
connected

weakly
connected

strongly
connected

subset relationsubset relation

strongly connected

same cluster

same cluster

1

2

3

+

+

4

5

+

+

+

Figure 2.1: Left: formal pipeline of operations for end-to-end entity resolution in-
cluding super-blocking, progressive blocking and clustering; Right: Different steps visu-
alized: 1: different weakly connected components, 2: not subset-reachable, 3: different

strongly connected components, 4: not similar but connected, 5: different clusters.
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are very likely to be subsets of many other different representations and are thereby

almost guaranteed to cause large blocks with completely unrelated mentions. We there-

fore suggest to scan all representations and check if they satisfy some defined minimal

requirements of specificity. If they do not, one can simply add the mention’s or the

representation’s identifier as an additional feature to isolate it in the set of all represen-

tations and prevent it from connecting a large number of unrelated representations and

mentions.

2.2.3 Generalization

In order to add additional connectivity, we can hypothesize unobserved representations

by generalizing observed ones. This can also be referred to as interpolation, especially if

the resulting representations are targeted to be “in between” observed representations.

Generalizing a representation simply means selectively creating subsets of a representa-

tion. These can be added to the observed representations. For example if we see John

Doe, we can hypothesize an unobserved representation J. Doe. Note that J. Doe is

represented by a subset of John Doe as the J in John is part of the latter’s representa-

tion. If we also see J. Doe explicitly mentioned in the data, nothing will change as the

hypothesized observation frequency was 0 and – after actual observation – is the same

as if not hypothesized (n + 0 = n). However, if we do not observe J. Doe, then the hy-

pothesized generalization can connect matching representations like John Doe and Jhon

Doe or Johnathan Doe – but also contradictory ones like Jack Doe. If a hypothesized

generalization does not add any connectivity, for example because John Doe is the only

J. Doe, then the edge between them will have a weight of 1 and will be contracted right

at the beginning (see below).

2.2.4 Separation

In very large datasets, we aim at completely separating representations that almost

certainly refer to unrelated mentions. Generally speaking, mentions with contradictory

representations need not be compared. However they might still be inseparable due to

another representation being not contradictory to both. For example J. Doe is related

in the subset partial order to John Doe and Jack Doe. Since we do not know if a mention

referenced as J. refers to John or Jack we have to compare it to both and the three can-

not be separated. No two representations related by the subset partial order are assumed

contradictory, i.e. any legal representation that adds features to another representation

is not contradictory to it. It is however possible that two representations are not in the

subset partial order, but are also not contradictory (e.g. John H. Doe and J. Herbert
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Doe). For this reason, generalizations like J. H. Doe are important to indirectly connect

them. This notion of contradiction imposes some degree of freedom and responsibility

to the representation generation. If we say that a person can have only one birth date,

then we must not create a representation with an additional date as that could be a

superset to any representation with only one date. Any legal representation with a dif-

ferent birth date is unrelated by the subset partial order – although not necessarily by its

symmetric closure. The symmetric closure relates all representations that are somehow

“connected” by the subset partial order or its inverse, the superset partial order. If a =

{(1st, John), (sur,Doe), (born, 1972)} and b = {(1st, John), (sur,Doe), (born, 1972)}

are supersets of c = {(1st, John), (sur,Doe), (born, 1972)}, then they are not related

by the subset nor by the superset partial order, but by their union. The symmetric

closure of the subset partial order returns connected components that include all pairs

that are not contradictory as well as pairs that are contradictory but somehow related

by non-contradictory representations. It is futile to compare pairs across connected

components. Therefore, we obtain what we call super-blocks as weakly connected com-

ponents on the DAG imposed by the subset partial order or its transitive reduction.

We show later how these components can be discovered efficiently and in parallel for

up to one billion representations. All further processing only happens within connected

components.

2.2.5 Collocation

For each connected component, we build the subset partial order over the respective

representations. In fact, it is sufficient to build only its transitive reduction. This gives

a DAG with one node per representation and edges implementing the subset partial

order over these representations – or its reduction. At this point, we already know that

any node b reachable from node a via some path p is more or equally similar than a node

reachable by an extension of p. In addition, we generate weighted edges by assigning

each representations/node two counts: (a) the observation-count giving the number of

times the representation has been observed exactly and (b) the carry-count giving the

number of times this representation or a superset has been observed. As described in

Chapter 2.1.10 these are used to compute edge-weights between adjacent representations

to find the representations that are most likely to be equivalent.

2.2.6 Conflation

We assume that all mentions with the same representation / under the same node are

always compared. To progressively compare more mentions, nodes are merged by edge
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Figure 2.2: Visualization by David Eppstein: ”The yellow directed acyclic graph is
the condensation of the blue directed graph. It is formed by contracting each strongly
connected component of the blue graph into a single yellow vertex.”, https://commons.
wikimedia.org/wiki/File:Graph_Condensation.svg, retrieved 6th March 2023.

contraction. As a consequence, mentions of directly connected nodes are combined

under the same node and hence compared. Edge contraction creates a graph minor

and is guided by edge weights. The higher the edge weight, the higher the chance of

being contracted. For iterative merging, many options are possible, as is shown later.

However, the one most true to the probabilistic interpretation of the edge weights is the

following. During each iteration, lower the merge-threshold t, starting at a threshold of

1. Compare all mentions in the same node. For each edge in the DAG draw a number r

from a uniform distribution over [0,1]. If r > t, note this edge as “activated”. A simpler

way is to activate all edges that are above the threshold, but this has the problem

that for example the probability of a path a
0.5
→ b

0.5
→ c is contracted at t = 0.5 and

not at t = 0.25 as we essentially take the minimum over the edge weights and not the

product as intended by the probabilistic interpretation. For each activated edge a → b

we can add a reversed edge b → a, compute the strongly connected components of the

new graph and merge all nodes inside the strongly connected components, creating its

condensation for further iterations (see Figure 2.2). The observation- and carry-counts

must be updated after each iteration so that they reflect the new numbers of mentions

in each node. For visualization purposes, each node can be described by the union of the

merged representations. However the superset partial order is not recomputed based on

those unions.

2.2.7 Clustering

Pairwise comparison within the growing representation nodes can be implemented by

any clustering method. One might want to keep the similarities or even the togetherness

information previously computed for mention pairs that were already in the same node

during the previous iteration, however the additional memory requirements should be

https://commons.wikimedia.org/wiki/File:Graph_Condensation.svg
https://commons.wikimedia.org/wiki/File:Graph_Condensation.svg
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considered. This describes essentially the entire framework with leaving open a number

of aspects for how to exactly obtain the order of conflation of the graph.





Chapter 3

Related Work

This chapter is meant to complement the related work sections of our individual publi-

cations. Therefore, we focus here on higher level problems of entity resolution and how

they are addressed in the literature. In that sense, Sections 3.1–3.6 are referring back

to the problem exploration in Chapter 2.1. In addition, in Section 3.7, we include a

comprehensive interpretation of the most common blocking approaches by thoroughly

analysing a recent survey article by Papadakis et al. [1]. In this context, we derive a

generalized matrix-based view on blocking in which we can describe most of the reviewed

blocking methods as well as our own approach. Finally, in Section 3.8, we touch upon

the issue of clustering by deriving a generalized model for different clustering methods,

in which blocking is merely a special case as well as summarizing in a schematic way

the different options from the literature for integration and communication between the

blocking and the clustering step.

45
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3.1 Transitivity in ER

The notion of transitivity is very central to the task of entity resolution for a number of

reasons. There are at least four major aspects related to it:

1. Transitivity as a target assumption

2. The incompatibility of intransitive matching and transitive equivalence

3. Transitivity as a threat (error propagation)

4. Transitivity as an opportunity (avoiding redundant comparisons)

3.1.1 Transitivity as a target assumption

Ultimately, if we aim at disambiguating entity references, we assume a target equiva-

lence relation (reflexive, symmetric, transitive) where each equivalence class corresponds

to a separate real world entity and all mentions in that equivalence class are references

thereof. As mentioned earlier, most clustering methods incorporate this target assump-

tion to the extend that they are unable to return non-equivalence output relations.

Clustering or blocking methods that output overlapping clusters could be modified by

duplicating all elements in the overlaps to obtain an equivalence relation. Otherwise

all overlapping clusters/blocks would be connected in this case. Other methods that

only output pairwise equivalence decisions must be followed by the application of the

transitive closure to obtain the final equivalence relation, a straight-forward rationale

pointed out by Papenbrock et al. [15] and many others.

3.1.2 Intransitive matching vs. transitive equivalence

Independent of how it is implemented, matching of two mention representations can be

considered a necessary condition for equivalence (any two equivalent mentions must have

matching representations / any two mentions that have contradictory representations

cannot be equivalent). Matching is however not sufficient for equivalence because of

potential homonymy. Therefore, the equivalence relation is a subset of the matching

relation. As the equivalence relation partitions the set of all mentions into disjoint

equivalence classes, it can be described not only as a set of pairs, but as a set of mention

sets, which is theoretically and computationally convenient, e.g. in connected component

labelling, because otherwise the time complexity is quadratic just because the output is a

square matrix. It is tempting to assume that the matching relation can also be described
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as a set of matching-based equivalence classes that are supersets of / can be further

partitioned into the equivalence-relation’s equivalence classes. However, despite contrary

statements in Monge and Elkan [33], matching is not transitive [34]. Consider J. Doe,

which matches with John Doe and Jack Doe although the latter two are contradictory.

The consequence is that mentions that are represented by J. Doe could refer to the

same entity as mentions in John Doe or in Jack Doe. But if we connect all mentions

in J. Doe with all those in John Doe and Jack Doe because they are matching, then

the transitive closure will also connect mentions that have been clearly specified to refer

to different entities (i.e. those that have been described as John and those described

Jack). In other words, creating disjoint blocks for further comparison, we are forced to

combine mentions that we know to be unrelated – the reason being missing information,

e.g. regarding the first name in J. Doe. Basically, some mentions in J. Doe could

perhaps be moved into John Doe, some into Jack Doe, and some might remain in J.

Doe as they do not co-refer with any of the mentions described by the two more specific

representations. But this information is not available at the matching level. Obviously

this makes it challenging to use all the information available on the matching level as

a precursor (blocking) to more detailed inspection (clustering). As the same holds for

similarity measures [34], simple bounds on similarity have the same deficiencies. This

unfortunate incompatibility has been directly and indirectly addressed in a number

of works. In blocking for author disambiguation, the problem is often circumvented

by choosing surname, first initial as blocking keys, i.e. the minimal information that

can be expected to present in any author reference. It is usually not mentions what

happens if for example the first initial is not present. It can be assumed that those

mentions are silently ignored. In other cases, surname, all initials is used, suggesting

that for example J. Doe ends up in a different block than J. H. Doe, which is not

very intuitive. This has been addressed to some extend in [35] using a basic rule. [34]

present a more formal approach, although they claim for their matching functions that

“merging two records r1 and r2 cannot create evidence (in the merged record r3) that

would prevent r3 from matching any other record that would have matched r1 or r2.”.

What if r1 is J. Doe, r2 is Jack Doe and “any other record” is John Doe which matches

r1 but not r3 (J. Doe+Jack Doe=Jack Doe)? The solution is to indirectly apply the

transitive closure on the intransitive matching relation by representing the result of two

merged records by the union of their representations, e.g. {J. Doe} + {Jack Doe} =

{J. Doe, Jack Doe}. They require only one of the elements in the representations to

match, so that {J. Doe, Jack Doe} matches {John Doe}. This means that the values

are not AND-, but OR-connected (Disjunctive normal form), amounting to single-link

clustering or basic blocking (anything that shares or matches in one value is connected).

Their iterative merging process is actually the same as our progressive merging, although

we separate the intension (initial node representation) from the extension (mentions in a
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node). The same approach is also taken in [36]. Regardless, it remains the problem that

mentions with clearly contradictory representations are connected in order to connect

matching ones (sacrificing blocking precision for recall against better judgement).

3.1.3 Transitivity as a threat (error propagation)

Many entity resolution methods are described in terms of a pairwise classifier that does

not guarantee by itself the transitive property of the equivalence relation [37]. Although

it is sometimes neglected, the pairwise classification must always be combined with

the transitive closure to obtain the true equivalence assumptions inherent in its local

decisions [38]. One can assume in principle that a pairwise classifier that is agnostic re-

garding the global consequences of its decisions performs worse than a clustering method

that acknowledges this at least to some extend by considering multiple data points in

order to connect those – or other points. For example in agglomerative clustering [39],

two clusters are merged considering in one way or the other the proximity of all of their

points, or in density-based clustering [40] surrounding points are summarized into a

density measure that acts as a prerequisite for connecting two points. In other words,

on the clustering level, a pairwise classifier might return a good precision and recall on

detecting pairwise equivalence, but only a few false positives can lead to enormous drops

in precision when the transitive closure is applied because suddenly all kinds of unre-

lated mentions are connected via these “narrow bridges” [14]. Therefore, transitivity is

the source of a great threat of error propagation.

3.1.4 Transitivity as an opportunity (avoiding redundant comparisons)

Being optimistic regarding the threat of error propagation, one can also use the transitiv-

ity of the equivalence relation to one’s advantage – i.e. to save unnecessary comparisons.

If we know that a ≡ b and b ≡ c, it is not necessary to compare a and c (note however

that from a quality-management point of view it does not hurt to verify a ≡ c, detect

potential prior errors and avoid their propagation). Although some address this oppor-

tunity more directly (e.g. Hernández and Stolfo [41]), all blocking methods exploit it.

For example, they might create an artificial data point x for each blocking key and link

mentions a, b, c to it, thereby determining a ≡ b, b ≡ c and a ≡ c without direct compar-

ison. Monge and Elkan [33] interpret entity resolution as “determining the connected

components of an undirected graph”, computing the transitive closure of matching de-

cisions to avoid comparing what is known to belong together rather than what is known

not to. Note that this does not address the major ER complexity problem as most

potential for omitting comparisons comes from ignoring pairs that are very unlikely to
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co-refer rather than ignoring those that are known to co-refer – simply because most

pairs do not co-refer. In the following we will summarize the work done by Firmani

et al. [36] as it precisely addresses the saving of redundant comparisons in due consider-

ation of the transitive closure and constitutes a powerful approach to entity resolution

in general. For any relation that satisfies the assumed necessary conditions for equality

(the default being all pairs), one can compute a (minimum) spanning tree or transitive

reduction giving a minimal set of coreference claims to be verified. For example if we

assume all n pairs in a supposed equivalence relation X × X and assume that all of

them can be verified if they are correct, then a simple total order can be created where

each mention x is connected to at most two other mentions. We can verify the entire

equivalence relation by verifying n− 1 supposed co-reference pairs. In reality, of course

we do not know the true equivalence relation but we want to find it. Still, assuming

a perfect verification oracle, two mentions cannot be connected indirectly (via transi-

tive closure) if they are not connected directly. A process that amounts to single-link

agglomerative clustering can therefore be applied, starting with singleton clusters and

connecting clusters if any two of the respective members are connected. A single pair

suffices to determine whether two clusters belong together – or not. In the following

Section 3.8, we present a theoretical clustering and blocking framework that also relies

on this notion and shows that most such methods can be described in terms of connec-

tions in a bipartite graph and subsequent transitive closure computation or connected

component search. It is even more important to avoid comparing pairs that are already

known to co-refer by transitive closure if the oracle is implemented as manual labor.

Therefore, the issue is addressed in the context of crowd-sourced entity resolution, like

in Wang et al. [42].
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3.2 Partial Orders, Lattices and DAGs for ER

The partial order (of entity mention representations) plays an important role in our

work. A number of other approaches to ER have also made use of partial orders to for-

malize important relationships. Benjelloun et al. [34] assume a partial order of records

and allow to compute “record domination” by the subset/superset relation. “Instance

domination” is built upon record domination by adding additional symmetric matching

relationships. It therefore instantiates a preorder. This has the same effect as merging

neighboring nodes in a blocking graph based on the record domination partial order,

e.g. by computing strongly connected components in the directed (but not acyclic)

graph that results from adding backwards edges for adjacent node pairs that we want

to merge. This is exactly what we propose in our framework, however here it is applied

on entity mentions, not on blocks of them. Kenig and Gal [43] do not directly describe

a partial order of representations, but represent mentions by sets of features and deploy

frequent itemset mining on them. Frequent itemset mining assumes a lattice over ob-

served and unobserved feature combinations, which amounts to a general partial order if

unobserved itemsets are dropped. In their work, the support of discovered maximum fre-

quent itemsets is taken for a block if its size is not too large and some cluster-coherence

measure is satisfied. Otherwise, more specific representations might be chosen as blocks

in later iterations with a reduced minimum support size. It seems that similar to sparse

representations in author disambiguation (e.g. only surname present), mentions with

very general representations will thus be ignored. Finally, Chai et al. [44] build a par-

tial order not on representations or mentions, but on mention pairs to avoid asking

crowd-sourced oracle questions for mention pairs that can be determined coreferent by

applying the transitive closure one previous decisions (see also Firmani et al. [36]). A

pair of mentions is represented by a vector with one dimension for each attribute and

the respective value being the similarity of the two involved mentions’ feature for this

particular attribute. Domination on pairs is defined as having a similarity value higher

or equal in every single attribute. It is not trivial to imagine what such a partial order

looks like in practice and unfortunately no instantiated examples are given. So despite

this work being very comprehensive and potentially relevant to the ER task in general,

it is not presented in an accessible way, making it hard to leverage the insights.
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3.3 Formal Concept Analysis, Association Rule Learning

and Rough Set Theory

As stated in the introduction, the research fields of Formal Concept Analysis (FCA),

Association Rule Learning (ARL) and Rough Sets are tightly connected both math-

ematically and by overlapping literature (or rather FCA is tied to both ARL [45–48]

and Rough Sets [49–52]). As described earlier, they are also strongly related to our

blocking approach and to general entity resolution problems. Despite this, we can find

only few works on entity resolution that explicitly reference FCA, ARL or Rough Sets.

A reason for this might be that each of the three research fields traditionally has their

own, focused application scenario. FCA is most used for ontology induction or concept

learning, ARL for shopping basket analysis (i.e. recommending products) and Rough

Sets in a classification rather than clustering context.

FCA is related to ER in that the subset/superset relation is used to build a lattice of

feature sets representing entities. Traditionally, each node in the lattice corresponds to

a (sub-)concept of an entity, while in our interpretation it corresponds to an entity’s

representation. There are two major reasons that make it problematic to use FCA for

ER. The first is that mentions of the same entity are usually expected to be variations

with similar granularity that are therefore expected to be arranged rather next to each

other than in a hierarchical relation. The second is that FCA usually assumes a lattice

that also contains unobserved representations obtained from instantiating all possible

feature combinations (i.e. the power set over the feature vocabulary) as nodes, which

is computationally infeasible in ER. However, we find that in many cases there exist at

least one entity mention whose set of blocking keys constitutes a generalization or subset

of multiple related mentions with similar granularity. For example you are likely to find

a J. Doe reference when you have John Doe or Jonathan Doe. Therefore it is reasonable

to build a partial order not over all possible combinations but only on the observed ones.

Furthermore, as long as the number is independent of the collection size, we can generate

any number of unobserved generalizations or subsets of observed representations to tie

together different variations of entity references. For example if we see Jon Doe, we can

hypothesize that this can also be referenced as John Doe by representing Jon Doe as

{Jon, John,Doe} and hypothesizing a normalized representation {John,Doe} that ties

it with another potential reference {John, Jonathan,Doe}. The great advantage of the

superset relation that underlies this approach is that it allows a fast nearest neighbor

search, because a superset can be found by taking the intersection
⋂

f∈R(x) R(f) of all

mentions R(f) with a feature f present in a representation R(x), for which there are

efficient solutions from Boolean retrieval.
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ARL adds useful frequency information to the concept lattice or its observed partial

order subset. The support of a representation is the sum of the observation count of all

representations that are the same or a specification thereof. It can be used to obtain

edge weights indicating the association strength (or coreference likelihood) between two

representations, for example by the confidence measure. This lends itself well to pro-

gressive resolution methods where the most promising associations are exploited first to

merge tightly connected representations and resolve their mentions in a verification step.

The reasons why ARL is not commonly used for ER are probably the same as those for

FCA. However, Kenig and Gal [43] use the concept of maximum frequent itemsets that

comes from ARL to obtain a complicated blocking algorithm.

Regarding the relationship between rough sets and entity resolution, some works by

K.A.Vidhya et al. [53–55] deploy “rough set attribute-based unsupervised hierarchi-

cal blocking” to resolve web-based entities in a schema-agnostic way. This approach is

comprehensible because rough set theory is concerned with the search for appropriate

equivalence relations based on a selection of attributes and essentially formalizes nec-

essary and sufficient conditions for equality. We have explained this in some detail in

Chapter 2.
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3.4 Similarity Search

If equivalence is defined as high-enough similarity, then the task of determining and

exploiting bounds on equivalence likelihood can be interpreted as similarity search,

nearest neighbor search or similarity joins. These methods are not always exact and

are described for the ER context in Papadakis et al. [1] under the term Filtering. The

general relationships are as follows. Similarity search [56–59] denotes all tasks that can

be related to finding similar objects in a large collection, retrieving the similarity of two

objects or sorting pairs of objects by similarity. Nearest neighbor search is a special case

of similarity search, where the task is either to find the k nearest neighbors for a given

object or to find all objects that are at most ϵ away from a given object. Similarity

join [42, 60–63] refers to a database operation that generalizes the join operator to a

similarity threshold operator returning all pairs of rows that differ at most ϵ in a certain

column. MinHash [64] is an efficient way of approximating Jaccard similarity of two sets

as the probability of collision over a number of simple hash functions. Locality Sensitive

Hashing (LSH ) [57, 65, 66] often uses MinHash to perform a dimensionality reduction

from all features of a collection to a fixed number of individual hash values. Identical

objects should have identical hash values and somewhat similar objects should have at

least one hash value in common. LSH is not a nearest neighbor method but can be used

to implement it. Essentially, LSH is a blocking method if we interpret the hash values of

an objects as its blocking keys. Therefore it is popular as an end-to-end ER method [67–

71]. In LSH, blocks are overlapping. The sparse dot product of the objects×keys matrix

with its own transpose returns all the pairs that share at least one blocking key, so only

somewhat similar pairs are returned. If these are too many, one might adapt the hash

function to produce fewer collisions. Other approaches to nearest neighbor search are

for example based on space partitioning (e.g. k-d-trees [72], R-trees [73], R*-trees [74] or

metric trees [75]). The subset partial order corresponds to a neighborhood in the Ham-

ming space over all possible representations (binary strings of length |F |) and thereby

lends itself to nearest neighbor search for the Hamming distance of representations as

these can be implemented as edge hops in the corresponding lattice’s graph. As there

is an infeasible number of 2|F | possible representations, in our work, we only consider a

subset of them, i.e. only observed representations and a limited number of hypothesized

representations derived from them. This comes at the risk of missing connections, but

the larger the number of data points in comparison to the space’s dimensionality, the less

likely are missed connections. In the subset of observed (and derived) representations

ϵ-hops also do not necessarily translate to a Hamming distance of ϵ but to one that is

at least ϵ, but while this is a problem for finding ϵ-nearest neighbors, it is not relevant
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to finding the k nearest neighbors of a given representation. Several exact and approxi-

mate solutions for nearest neighbor search in Hamming space have been proposed (e.g.

[76–80]), but it is a beyond the scope of this work to determine whether and to which

extend they are applicable to ER blocking in practice. In a survey by Papadakis et al.

[1] discussed later, a number of similar-purpose methods are presented under the term

“Filtering”, in particular “partition-based Filtering”.
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3.5 Constrained Clustering

Constrained clustering [81] is a generalization of standard clustering that allows to spec-

ify must-link or cannot-link constraints to be satisfied by the output clusters. Con-

straints are simply sets of point-pairs that need to be together in the same cluster or

must be in different ones. Then standard clustering is a special case where the sets

of must-link and cannot-link constraints are both empty. Constrained Clustering is in-

teresting for ER because it formalizes a different view on the matching relation than

blocking does. In blocking, we are trying to exploit the matching relation in order

to save computational complexity by indirectly excluding contradictory pairs from di-

rect comparison, e.g. by a pre-partitioning the collection. We have already seen that

the incompatibility of the matching- and the equivalence relation forces us to accept

knowingly contradictory representations within the same block. Constrained cluster-

ing enforces clusters that separate contradictory records and group equivalent ones.

Cannot-links are the result of unsatisfied necessary conditions for equivalence and must-

links are the result of satisfied sufficient conditions (given the limited view defined by

the blocking features). Although constrained clustering is opposed to blocking in that

it is not less but more expensive than normal similarity-based clustering, it might be

relevant to consider its relationship to blocking and clustering. For example, we could

consider the clustering step followed by blocking to be constrained by the contradic-

tions that we have had to accept during blocking. In a recent survey, Gançarski et al.

[82] summarize that there are additional types of constraints. Besides cannot-links and

must-links that are instance-level constraints, cluster-level constraints are also possible.

Examples are (a) the number of clusters, (b) an acceptable range for the number of

points per cluster, (c) a maximum difference for points in the same cluster, (d) a min-

imum difference between two clusters (e.g. measured by the closest elements) or (e) a

minimum cluster density (e.g. each element must be in a dense region). However, (c)

can also be achieved by establishing cannot-links for all sufficiently dissimilar points and

(d) through must-links for all sufficiently similar points. Constraint (a) is an unfortu-

nate parameter of many cluster methods anyway and (e) is automatically constraint in

density-based clustering methods. Finally (b) is interesting from a blocking point of

view, but not so much in a clustering setting as it should be taken care of by (c) so that

large clustered that are actually justified are not split up. From our point of view, these

additional constraint-types are rather parameters of the clustering methods and add un-

necessary conceptional overhead in the context of entity resolution where we are mostly

interested in using cannot-link constraints for known contradictions and perhaps some

must-links for semi-supervised learning. Without going into great detail, probably the

most important aspect regarding constraint clustering in our context is the expected



Chapter 3 Related Work

computational cost associated with it in comparison to standard clustering methods

(see also [83]). In Davidson and Ravi [32], it is summarized that contraint clustering

is intractable if both must-links and cannot-links are considered and if only cannot-

links are considered. Obviously, only must-links can be considered easily, for example

in agglomerative clustering by using them as initial clusters. A general consideration

is that with a good similarity metric, the constraints should be useless, as points that

must be linked would be very similar and points that cannot be linked would be very

dissimilar. If a constraint violates the similarity notion, a reasonable approach would

be to investigate the reasons and adapt the similarity measure so that it better captures

the true coreference likelihood. Alternatively, the known constraints could also be used

to learn or tune such a similarity measure automatically. This is also acknowledged

by Basu and Davidson [84]. In fact, in Davidson and Ravi [32], two works [85, 86] are

cited that have observed better results applying a standard clustering with a similarity

measure optimized w.r.t. constraints than enforcing the constraints during clustering.

However, this only works if the number of clusters specified in the clustering method

does not contradict the underlying assumptions in the similarity measure and in the

constraints [32]. In other words, if one asks for a clustering that makes no sense, one

will get it. If the (modified) similarity measure distinguishes roughly k dense regions,

and these also correspond to the constraints, then the clustering method should not be

asked to cluster the data into k′ clusters, where k′ is much different from k. The features

used to obtain the constraints (e.g. the blocking features that result in a non-matching)

can be included with the clustering features, and even weighted heavily if necessary.

Especially if only cannot-links or only must-links are used, one can simply combine the

Boolean constraint with the gradual similarity of the remaining features, e.g. by tak-

ing the minimum or product with cannot-links (can-be-linked:False) or maximum with

must links must-be-linked:True. If a differentiable function is desired, we are back at the

problem of adopting the similarity measure. Although in this work we do not pursue

the option of deploying constraint clustering to recognize known within-block matching

contradictions, this presents an interesting opportunity for future work.
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3.6 CNF and DNF Learning

If some curated coreference data is available, it might be desirable to learn a blocking

scheme rather than using only common sense in its design or improving an initial scheme

iteratively. The essential properties against which to evaluate and optimize schemes is

that it should group coreferent mentions and separate non-coreferent mentions. This

can be measured in terms of false-positives and false-negatives and aggregated in various

performance functions like precision and recall. Concerning the learned output, blocking

schemes are expected to be described in a logical formula, either in disjunctive normal

form (DNF) or in conjunctive normal form (CNF). General purpose propositional logic

rule learning algorithms can then be applied. A blocking predicate d(x, y) is defined to

be a binary Boolean function d that takes two representations x, y and returns True if

they satisfy the constraint declared by it, or False if not. In practice, these functions are

defined based on a feature-selector (e.g. a certain column or attribute) and a feature-

comparator (e.g. equality or similarity). For example same surname returns True for two

names with the same surname component. Likewise, the predicate can also be deployed

in a function g(x, d) that returns for a given x all other representations y such that

d(x, y) = 1 [28]. Obviously, the pairwise formulation in d(x, y) is useless in a blocking

context where the main point is to avoid pairwise comparisons. Therefore, it is advisable

to use only scalable feature-comparators that can be determined without exhaustive

pairwise comparison [26]. Then, we can use the feature-selector to define a sparse |X| ×

|F | matrix x
f

⊞ that assigns each representation x ∈ X its features f ∈ F . In addition,

we can define a sparse |F | × |F | matrix f
f

⊞ that encodes the feature relationships, e.g.

a diagonal matrix for equality or a matrix with a wider diagonal on sorted features if

alphabetical similarity is deployed with a threshold. The sparse dot-product x
f

⊞ ·f
f

⊞

returns a modified sparse |X|× |F | matrix that could for example be used to read off all

representations that have a selected key exactly or a sufficiently similar one as defined

by the comparator. Regardless of whether we have generalized x
f

⊞ in this way or not, we

can then deploy a special operation ⋆ with an |F |×|K| matrix f
k

⊞, where K is the feature

conjunctions that are called blocking keys: x
f

⊞⋆f
k

⊞ = x
k

⊞, where x
k

⊞ij =
∏

l
x
f

⊞il ≥
f
k

⊞lj ,

meaning every feature that some x has must appear in the features of the conjunction

k for x to be mapped to k. The sum of products (dot product) implements disjunction

and our special operation implements conjunction. Each blocking key is considered a

conjunction of features. By assigning each representation not only its selected features

but also the features that are considered sufficiently similar to them, we can implement

the feature-comparator. The dot-product x
k

⊞ ·k
x

⊞ = x
x

⊞, where k
x

⊞ = x
k

⊞

T

, returns a

sparse |X| × |X| matrix x
x

⊞ with a value for all representation pairs that share at least
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one block. The blocking scheme can be considered disjoint if each representation is only

assigned one key in x
k

⊞ (and each key processed as a separate block) or if we take the

transitive closure and connect all overlapping blocks (which is what the sum in the dot-

product does). Note that in this setup, the feature-selector is implemented in x
f

⊞ and

the feature-comparator in f
f

⊞. It is also possible to redefine F and use x
f

⊞ strictly for

mapping all kinds of associated information to a representation and then encode both

the selector and the comparator in f
f

⊞, where a non-selected feature corresponds to an

empty row (and column). Note also that if the number of distinct selected features is

very small, then pairwise feature-comparison could actually be feasible. For this, iterate

over all pairs of distinct selected features, check whether their similarity satisfies the

comparator threshold and if so, add a value to f
f

⊞. If the threshold results in a feature

matrix that is sufficiently sparse, the above dot-product should still be feasible. In

the literature, there is a distinction made between DNF- [24–27] and CNF [28, 87, 88]

blocking. From a theoretical perspective, this distinction is not necessary as every DNF

can be converted into a CNF and vise-versa. In some cases, the CNF might be more

compact than the DNF. For example, in Kim et al. [28], the following CNF is learned:

(

same

surname

)

∧

(

same

firstinit

)

∧

(

compatible

middlename

)

∧

((

compatible

firstname

)

∨

(

cosim > 0.8

coauthors

))

which translates to the following DNF:

((

same

surname

)

∧

(

same

firstinit

)

∧

(

compatible

middlename

)

∧

(

compatible

firstname

))

∨

((

same

surname

)

∧

(

same

firstinit

)

∧

(

compatible

middlename

)

∧

(

cosim > 0.8

coauthors

))

We prefer the DNF as it corresponds directly to the matrix notation presented above

and the individual conjunctions can be interpreted as lower bounds of the respective set

of representations in the subset partial order of key-sets. Each conjunction within the

disjunction corresponds to a potential key assignment in x
k

⊞. In the subset partial order,

we can observe non-disjointness as overlaps. For the above example, Kim et al. [28] claim

that the formula is disjoint, but we can see that this can only hold if
(

compatible
firstname

)

and
(

cosim>0.8
coauthors

)

are either mutually exclusive or equivalent/redundant, which might be the

case in the training data, but is not guaranteed per se. Let a =
(

same
surname

)

∧
(

same
firstinit

)

∧
(

compatible
middlename

)

and b =
(

compatible
firstname

)

and c =
(

cosim>0.8
coauthors

)

. Then a → (a ∧ b) and a →

(a ∧ c). Why should there not be a d, s.t. c → (c ∧ d) with overlapping DNFs (a ∧

b) ∨ (a ∧ c) and (a ∧ c) ∨ (d ∧ c)? As said above, the easiest way to ensure a disjoint

blocking seems to assign each representation only a single key, i.e. to learn only a

single conjunction of individual terms. Alternatively, one can also accept the transitive
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closure to connect overlapping blocks and learn relatively specific DNFs so that blocks

do not get too large. After the output format and its (feasible) application to blocking is

established, a remaining question is how to learn the DNF or CNF from annotated data.

In the literature, a number of general purpose methods are discussed and/or deployed,

in particular the Sequential Covering Algorithm in [26–28], Peleg’s Greedy Algorithm in

[25] and ApproxRBSetCover in [25]. In addition, Whang and Garcia-Molina [87, 88] and

Kejriwal and Miranker [24, 26] present custom algorithms for learning blocking schemes.
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3.7 Existing Blocking and Filtering Methods

This section is based on a comprehensive recent survey by Papadakis et al. [1] that lists

all major blocking and filtering methods until 2020. We build on this survey by referenc-

ing and interpreting its taxonomy as well as introducing a straight-forward framework

to generalize most of the presented methods in terms of sparse matrix multiplication.

In the recent survey [1], the following high-level distinction of blocking methods (or

rather methods used in the context of blocking) is made1:

1. Block Building

(a) Hash-based Blocking

(b) Sort-Based Blocking

(c) Hybrid (Hash+Sort) Blocking

(d) Learned Blocking

(e) Schema-Agnostic Blocking

2. Block Processing

(a) Static Block Cleaning

(b) Dynamic Block Cleaning

(c) Comparison Cleaning

3. Filtering

(a) Basic Filtering

(b) Prefix-Filtering

(c) Partition-based Filtering

(d) Tree-Based Filtering

(e) Approximate Filtering

(f) Fuzzy Matching

4. Join-based Blocking

(a) Lossless Join-based Blocking

(b) Lossy Join-based Blocking

(c) Spacial Join-based Blocking

5. Progressive Blocking

(a) Schema-based Progressive Bl.

(b) Schema-agnostic Progressive Bl.

This taxonomy is presented in more detail in Figures 3.1 (Block Building), 3.6 (Block

Processing), 3.9 (Filtering), 3.11 (Join-base Blocking) and 3.12 (Progressive Blocking).

In the survey paper [1], not all taxonomies are displayed as Figures – probably due

to space constraints. We have done our best to identify all methods referenced in the

survey and have listed them together with a shortened description from the survey as

well as our own comments (the latter only for Block Building, Block Processing and

Progressive Blocking). This list is displayed in Tables 3.1 (Block Building), 3.2 (Block

Processing), 3.3 (Filtering), 3.4 (Join-based Blocking), 3.5 (Progressive Blocking). Our

focus lies on Block Building, Block Processing and Progressive Blocking as these are the

tasks most closely related to our work. In our opinion, the taxonomy presented in the

survey [1] is not always optimal in the sense of exposing generalizations, commonalities

and peculiarities of the individual methods. We have noticed that a great number of

Block Building and Block Cleaning methods can be described in a simple matrix-based

1Following the original publication, we capitalize the respective terms in this section.
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block building

schema-aware learning schema-awarenon-learning schema-aware

hash-based sort-based supervised unsupervised

STANDARD

SUFFIX
ARRAYS
(extended)
(improved)

Q-GRAMS
(extended)

(MFI blocks)

SORTED BLOCKS
(new partition)

(improved suffix arrays)

SORTED
NEIGHBORHOOD

(extended)
(duplicate count strategy)
(incrementally adaptive)
(accumulative adaptive)

CBLOCK

APPROX RB
SET COVER
(approx DNF)

BLOCKING SCHEME
LEARNER

(conjunction learner)

GENETIC
PROGRAMMING

DNF LEARNER
(Fisher disjunctive)

schema-agnostic

non-learning schema-agnostic

TOKEN BLOCKING
(attribute clustering)
(RDF key learner)

(prefix-infix-suffix)
(TYPiMatch)

SEMANTIC
GRAPH BLOCKING

learning schema-agnostic

HETERO
EXTENDED

DNF BSL

Figure 3.1: Block building taxonomy as defined in Papadakis et al. [1]

formalism, which is visually accessible and useful to discover the above mentioned tax-

onomic relationships. The visualizations corresponding to the matrix-based formalism

are displayed in Figures 3.2 (Hash-based Block Building), 3.3 (Sorted-Neighborhood

Block Building), 3.4 (Hybrid Block Building), 3.5 (Schema-agnostic Block Building),

3.7 (Static Block Cleaning). Finally, we have created our own flat taxonomy for Block

Building methods that we present in Table 3.6. Here, we distinguish between the kind

of blocking features, the feature-similarity and the threshold applied on it and whether

a representation is usually assigned one or multiple features. Furthermore, we try to

determine whether the methods feature the desired properties formulated in the intro-

duction, which constitutes a kind of application-based or user-side taxonomy in contrast

to the technical taxonomy inherent in the other columns of this table. In contrast to

the survey [1], we do not distinguish between deduplication and record linkage, as they

are essentially the same, only that in the latter some side-information is available that

tells us we do not need to compare record pairs within each collection.

3.7.1 Block Building

In the survey [1], Block Building describes the process of creating a representation to

block(s) mapping from scratch (i.e. from the representations). Any refinement of this

block-mapping is described under Block Processing in the following subsection. We have

summarized these methods in Table 3.1 and reproduce the taxonomy by Papadakis et al.

[1] in Figure 3.1. Our sparse matrix view that works with most block building methods

consists of two matrices (cf. Figure 3.2). The first is the |X|×|F | matrix x
f

⊞ that assigns

each representation x ∈ X its features f ∈ F . In addition, we assume an |F |×|F | matrix

f
f

⊞ that maps each feature f ∈ F to all sufficiently similar features. We can then obtain
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f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

x

x

•◦◦◦◦◦◦◦◦◦
◦••◦◦◦◦◦◦◦
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦•◦◦◦◦•
◦◦◦◦◦•◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦
◦◦◦◦•◦◦◦◦•

Standard Blocking

f (suffixes)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••◦◦◦◦•◦◦
•••◦◦◦◦••◦
•••◦◦◦◦•◦◦
◦◦◦••◦••◦•
◦◦◦•••◦◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦•◦◦•
••••◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

Suffix-Arrays

f (infixes)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••◦◦◦◦•◦◦
•••◦◦◦◦••◦
•••◦◦◦◦•◦◦
◦◦◦••◦••◦•
◦◦◦•••◦◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦•◦◦•
••••◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

Extended Suffix Arrays

f (q-grams)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••◦◦◦◦•◦◦
•••◦◦◦◦••◦
•••◦◦◦◦•◦◦
◦◦◦••◦••◦•
◦◦◦•••◦◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦•◦◦•
••••◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

Q-grams
Extended Q-grams

• filled cell (true) ◦ empty cell (false)

Figure 3.2: Describing hash-based block-building as matrix multiplication.

the sparse |X| × |X| matrix x
x

⊞ = x
f

⊞ ·f
f

⊞ ·f
x

⊞, where f
x

⊞ = x
f

⊞

T

. The taxonomy from

the survey [1] is in Figure 3.1.

3.7.1.1 Hash-based Block Building

In Hash-based Block Building, f
f

⊞ is diagonal, that is each feature is only assigned to

itself and there are no feature-feature relations. The differences between the hash-based

methods can be summarized quickly in reference to Figure 3.2. Standard Blocking:

map only one feature (i.e. blocking key, i.e. feature-combination) to each representation.

This returns a disjoint blocking. Suffix-Arrays: use suffixes of the blocking key as

features. This is not disjoint. Extended Suffix Arrays: Use infixes instead. Q-

grams and Extended Q-grams: Use character q-grams instead.

3.7.1.2 Sort-based Block Building

The specialty of sort-based block building methods is to exploit the fact that alphabeti-

cal sorting can be done in subquadratic time by sorting features and using neighborhood
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f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦•••◦◦◦◦
◦•••◦◦◦
◦◦•••◦◦
◦◦◦•••◦
◦◦◦◦•••
◦◦◦◦◦••

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

x

x

•◦◦◦•◦◦◦◦•
◦••••◦•◦◦•
◦••••◦•◦◦•
◦•••◦••◦◦◦
•••◦•◦◦◦◦•
◦◦◦•◦•••◦◦
◦•••◦••◦◦◦
◦◦◦◦◦•◦••◦
◦◦◦◦◦◦◦••◦
•••◦•◦◦◦◦•

Sorted Neighborhood (SN)

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦•••◦◦◦◦
◦•••◦◦◦
◦◦•••◦◦
◦◦◦•••◦
◦◦◦◦•••
◦◦◦◦◦••

+

(

f (re-sorted)

f
(r
e-
so
rt
ed

) ••◦◦◦◦ ◦•••◦◦◦ ◦
◦•••◦◦ ◦
◦◦•••◦ ◦
◦◦◦••• ◦
◦◦◦◦•• •
◦◦◦◦◦• •

unsort=⇒

f (re-sorted)

f
(r
e-
so
rt
ed

) •◦•◦•◦ ◦◦•◦◦•◦ •
•◦•◦◦• ◦
◦◦◦•◦• ◦
••◦◦•◦ ◦
◦◦••◦• ◦
◦•◦◦◦◦ •

)

=

f

f

•••◦•◦◦
•••◦•◦•
••••◦•◦
◦◦••••◦
••◦•••◦
◦◦•••••
◦•◦◦◦••

⇒

x

x

•••◦••◦◦◦•
•••••◦••◦•
•••••◦••◦•
◦•••◦•••◦◦
•••◦••◦◦••
•◦◦•••••◦•
◦•••◦•••◦◦
◦•••◦••••◦
◦◦◦◦•◦◦•••
•••◦••◦◦••

Multi-pass Sorted Neighborhood

f (sorted)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦•••◦◦◦◦
◦•••◦◦◦
◦◦•••◦◦
◦◦◦•••◦
◦◦◦◦•••
◦◦◦◦◦••

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••••◦••◦•
•••••◦••••
•••••◦••◦•
••••••••••
••••••••◦•
◦◦◦•••••◦•
••••••••◦•
••••••••••
◦•◦•◦◦◦••◦
••••••••◦•

Extended SN

f (sorted)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦•••◦◦◦◦
◦••••◦◦
◦◦•••◦◦
◦◦•••••
◦◦◦◦•••
◦◦◦◦•••

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

x

x

•◦◦◦•◦◦◦◦•
◦••••••◦◦•
◦••••••◦◦•
◦•••◦••◦◦◦
•••◦•◦◦◦◦•
◦•••◦••••◦
◦•••◦••◦◦◦
◦◦◦◦◦•◦••◦
◦◦◦◦◦•◦••◦
•••◦•◦◦◦◦•

Incrementally Adaptive SN
Accumulative Adaptive SN
Duplicate Count Strategy
DCS++

• filled cell (true) ◦ empty cell (false)

Figure 3.3: Describing various sort-based block-building methods as matrix multipli-
cation.

in the resulting total order as an approximation of string similarity. The matrix views

are shown in Figure 3.3. In Sorted Neighborhood, only one key is assigned to each

representation and these keys are sorted alphabetically. Obviously this does not work

with hashed keys but requires them to be such that their alphabetical ordering resembles

a meaningful similarity. In Multi-pass Sorted Neighborhood, we use different types

of sortable features and get the final x
x

⊞ matrix for each of them to then finally add

up all the different x
x

⊞. In Extended Sorted Neighborhood, multiple features can

be assigned to each representation. In Incrementally Adaptive Sorted Neighbor-

hood, Accumulative Adaptive Sorted Neighborhood, Duplicate Count Strat-

egy and DCS++, the window size applied on the sorted features in order to define

feature-neighborhood varies depending on the current feature in focus and its concrete

neighbors in the total alphabetical order.
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f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦••◦◦◦◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

(

x

x

•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦•••◦••◦◦◦
•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦
•◦◦◦•◦◦◦◦•

rearange=⇒

x

x

•••◦◦◦◦◦◦◦
•••◦◦◦◦◦◦◦
•••◦◦◦◦◦◦◦
◦◦◦•••••◦◦
◦◦◦•••••◦◦
◦◦◦•••••◦◦
◦◦◦•••••◦◦
◦◦◦•••••◦◦
◦◦◦◦◦◦◦◦•◦
◦◦◦◦◦◦◦◦◦•

)

Sorted Blocks

f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦••◦◦◦◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

(

x

x

•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦•••◦••◦◦◦
•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦
•◦◦◦•◦◦◦◦•

rearange=⇒

x

x

•• · ◦◦◦◦◦◦◦
•• · ◦◦◦◦◦◦◦
· · •◦◦◦◦◦◦◦
◦◦◦•• · · · ◦◦
◦◦◦•• · · · ◦◦
◦◦◦ · · •• · ◦◦
◦◦◦ · · •• · ◦◦
◦◦◦ · · · · •◦◦
◦◦◦◦◦◦◦◦•◦
◦◦◦◦◦◦◦◦◦•

)

Sorted Blocks New Partition

f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f (sorted)

f
(s
o
rt
ed

) ••◦◦◦◦◦••◦◦◦◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦

=

(

x

x

•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦•••◦••◦◦◦
•◦◦◦•◦◦◦◦•
◦•••◦••◦◦◦
◦•••◦••◦◦◦
◦◦◦◦◦◦◦•◦◦
◦◦◦◦◦◦◦◦•◦
•◦◦◦•◦◦◦◦•

rearange=⇒

x

x

•• · ◦◦◦◦◦◦◦
· ••◦◦◦◦◦◦◦
· · •◦◦◦◦◦◦◦
◦◦◦•• · · · ◦◦
◦◦◦••• · · ◦◦
◦◦◦ · ••• · ◦◦
◦◦◦ · · •••◦◦
◦◦◦ · · · ••◦◦
◦◦◦◦◦◦◦◦•◦
◦◦◦◦◦◦◦◦◦•

)

Sorted Blocks Sliding Window

f−1 (sorted)

x

•◦•◦◦◦ ◦
◦◦•◦◦◦ •
◦◦•◦◦◦ ◦
◦•◦•◦• ◦
◦•◦◦•◦ ◦
◦◦◦◦•◦ ◦
◦◦◦•◦◦ ◦
◦◦•◦◦• ◦
◦◦◦◦◦◦ •
◦•◦•◦◦ ◦

·

f−1 (sorted)

f−
1
(s
o
rt
ed

) ••◦◦◦◦ ◦••◦◦◦◦ ◦
◦◦•••◦ ◦
◦◦•••◦ ◦
◦◦•••◦ ◦
◦◦◦◦◦• ◦
◦◦◦◦◦◦ •

·

x

f−1

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

••••••••◦•
••••••••••
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
◦•◦◦◦◦◦◦•◦
••••••••◦•

Improved Suffix Arrays

• filled cell (true) ◦ empty cell (false) · removed value (false)

Figure 3.4: Describing hybrid block-building as matrix multiplication.

3.7.1.3 Hybrid Block Building Methods

Hybrid Block Building methods can be described as performing a blocking on features

(see Figure 3.4). In Sorted Blocks, each representation is assigned a single blocking

key. These are then grouped into disjoint blocks rather than continuously overlapping

windows as in the Sorted-Neighborhood approaches. Because of the 1:1 mapping from

representations to features, this corresponds to a disjoint blocking on the representation

level. In Sorted Blocks New Parition, the same method is applied, only that the

resulting representation blocks are split up if they are too large. Likewise, in Sorted

Blocks Sliding Window, a sliding window is applied on the result matrix x
x

⊞. How-

ever, if we are not mistaken, this last step should actually be considered a means of

Comparison Cleaning as discussed later. In Improved Suffix Arrays, each represen-

tation is assigned multiple features, i.e. suffixes of the blocking key, and the suffixes
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f (tokens)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••◦◦◦◦•◦◦
•••◦◦◦◦••◦
•••◦◦◦◦•◦◦
◦◦◦••◦••◦•
◦◦◦•••◦◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦•◦◦•
••••◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

Token Blocking

f (attr,val)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f (sorted)
f
(s
o
rt
ed

) ••◦◦◦◦◦••◦◦◦◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦•••◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

••••••••◦•
••••••••••
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
••••••••◦•
◦•◦◦◦◦◦◦•◦
••••••••◦•

Attribute Cluster Blocking

f (attr,val)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

◦◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦◦◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

◦◦◦◦◦◦◦◦◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦◦◦◦◦◦◦◦
◦◦◦••◦••◦•
◦◦◦••◦◦◦◦•
◦◦◦◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦•
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

RDFKey Learner

f (URLs)

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

•••◦◦◦◦•◦◦
•••◦◦◦◦••◦
•••◦◦◦◦•◦◦
◦◦◦••◦••◦•
◦◦◦•••◦◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦•◦◦•
••••◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦
◦◦◦••◦•◦◦•

Prefix-Infix-Suffix Blocking

f

x

•◦•◦◦◦◦
◦◦•◦◦◦•
◦◦•◦◦◦◦
◦•◦•◦•◦
◦•◦◦•◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦•◦◦•◦
◦◦◦◦◦◦•
◦•◦•◦◦◦

·

f

f

•◦◦•◦◦•
◦•◦◦◦◦◦
◦◦•◦◦◦◦
•◦◦••◦◦
◦◦◦••◦•
◦◦◦◦◦•◦
•◦◦◦•◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦••◦◦◦◦•
•••◦◦◦◦•◦◦
◦◦◦•◦◦•◦◦•
◦◦◦◦••◦◦◦◦
◦◦◦•◦◦◦•◦◦
◦•◦◦◦◦◦◦•◦

=

x

x

••••◦◦••••
•••◦••◦••◦
•••◦◦◦◦•◦◦
•◦◦•••••◦•
◦•◦••••◦••
◦•◦••••◦••
•◦◦••••◦◦•
••••◦◦◦•◦◦
••◦◦••◦◦•◦
•◦◦••••◦◦•

TYPiMatch

• filled cell (true) ◦ empty cell (false)

Figure 3.5: Describing schema-agnostic block-building as matrix multiplication.

are sorted and partitioned based on this order. This can be implemented by revers-

ing the suffixes and applying the Sorted Blocks method. Thereby the length of the

suffix-overlaps will be rewarded by proximity in the alphabetical order.

3.7.1.4 Schema-agnostic Block Building Methods

In our opinion, schema-agnostic methods do not really define a separate category of block

building methods, but constitute additional methods that are similar to methods previ-

ously described in various categories. The difference is simply in the feature-extraction

step. The methods are visualized in Figure 3.5. In Token Blocking, a representation

is assigned multiple tokens that are used as before to determine overlapping blocks.

The definition of a token is essentially free. Attribute Cluster Blocking is similar

to Improved Suffix Arrays in that it allows to assign multiple features to one represen-

tation and groups the features. The difference is that here, the feature-blocking it is
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block processing

block cleaning

static block cleaning dynamic block cleaning

block purging
block filtering

Size-based Block Clustering
MaxIntersectionMerge

Rollup Canopies

Iterative Blocking
Block Scheduling

Block Pruning

comparison cleaning

nonlearning comparison cleaning SPAN learning-based comparison cleaning
Comparison Propagation

Meta-blocking

Comparison Pruning
WEP
CEP
WNP

BLAST
CNP

Reciprocal WNP

LECP
LBSP
LBCP
LBCE

Transitive LSH
Canopy Clustering

Extended Canopy Clustering
Comparison Scheduling Supervised Meta-blocking

Figure 3.6: Block processing taxonomy as defined in Papadakis et al. [1]

not based on the alphabetical order but on some attribute relationships as all features

are attribute-value pairs. We have noted before that if |F | is sufficiently small, then

an exhaustive comparison of features might be feasible. RDFKey Learner allows to

de-select some features, which can be implemented by empty rows (and columns) in f
f

⊞.

In Prefix-Infix-Suffix Blocking, the features are selected to be components of the

URLs representing the entities to be disambiguated. This obviously requires a very spe-

cific input data. Finally, TYPiMatch tokens are considered entity-references. These

are grouped into “entity-types” in f
f

⊞ based on distributional similarity in a different

dataset. As a result, all representations are compared that share at least one feature

with the same entity-type.

3.7.1.5 Block Building Methods outside our Scheme

A number of Block Building methods do not fit as easily into the sparse matrix frame-

work introduced above. One of them is MFIBlocks, which we have already discussed

in Section 3.1. Semantic Graph Blocking is defined on a semantic knowledge graph

that could of course be encoded in a matrix, however the exploited notion of path length

is rather hidden in this view. The others are all block learning methods, i.e. Supervised

Block Learning, Unsupervised Block Learning and Schema-agnostic Block Learning. The

problem of learning blocking schemes has been discussed to some extend in Section 3.2.

There, we have also shown how to extend the above matrix view by a sparse matrix

x
k

⊞ where x
k

⊞ij =
∏

l
x

f

⊞il ×
f
k

⊞lj . While this does not answer the question how such

schemes are learned (which is what mainly distinguished the Block Learning methods),

still we have seen that the result can be easily integrated in the matrix formalism.
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H
a
sh
-B

a
se
d

Standard Blocking (SB)
Concatenate features to form blocking keys. One key per mention. One block per key. All mentions with this key are in the block.
→ A hash function that maps mentions into non-overlapping blocks trying to minimze cross-block coreferences.
Suffix Arrays Blocking (SA)
Split keys into all suffixes longer than a threshold. Remove frequent suffixes. One block per suffix.
→ Essentially just a key-generalizing preprocessing step to Standard Blocking. Should generate overlapping blocks.
Extended Suffix Arrays Blocking
Split keys into all infixes longer than a threshold.
→ Just a straightforward modification to Suffix Arrays Blocking.
Q-Grams Blocking
Split keys into all character q-grams.
→ Essentially just a key-generalizing preprocessing step to Standard Blocking.
Extended Q-Grams Blocking
Split keys into all character q-grams. Remove frequent q-grams.
→ Just a straightforward modification to Q-Grams Blocking.
MFIBlocks
Maximal frequent itemset algorithm to define as blocking keys those q-grams exceeding a support threshold.
→ Q-grams are not the essential part here. This is quite a unique approach.

S
o
rt
-b
a
se
d

Sorted Neighborhood (SN)
Sort all blocking keys alphabetically. Compare mention at position i with those at i-w,i-w+1,...,i-1.
→ Relies fully on the total alphabetical order, which however often does catch meaningful similarities in meaning.
Multi-pass SN
Use different blocking key functions and repeat for all of them.
→ Straight-forward extension of Sorted Neighborhood.
Extended Sorted Neighborhood
Compare all mentions that have the blocking key at position i with those mentions that have the key at i-w,i-w+1,...,i-1.
→ Add an intermediate level, which I guess means that one mention can have multiple keys.
Incrementally Adaptive SN
Increase window size w depending on similarity of mention i and i-w.
→ Makes sense because you need to calculate the similarity of mention i and i-w anyway.
Accumulative Adaptive SN
Increase window size w depending on likelihood of finding an equivalence in the window.
→ How is this different from Incrementally Adaptive SN? Maximum similarity should correlate with average similarity.
Duplicate Count Strategy (DCS)
Increase window size w depending on likelihood of finding an equivalence in the window in proportion to window size.
→ Straight-forward modification of Accumulative Adaptive SN.
DCS++
Some technical improvements to DCS.
→ Conceptionally the same as DCS.

H
yb

ri
d

Sorted Blocks
Sort blocking keys lexicographically. Partition entities using blocking key prefixes. Extend partitions by fixed length overlaps.
→ Seems to be just a recombination of previous principles. If full keys are sorted then same prefixes are next to each other.
Sorted Blocks New Partition
Start another block when the current block’s size exceeds a threshold for the current blocking key prefix.
→ The most important aspect is the dynamic consideration of block size. However, the breaking point is arbitrary and not optimized.
Sorted Blocks Sliding Window
Use a sliding window over each block separately.
→ Straightforward recombination of previous approaches in a two-layered framework. But how are the blocks sorted?
Improved Suffix Arrays Blocking
Sort blocking key suffixes alphabetically. If consecutive suffixes are sufficiently similar, the corresponding blocks are merged.
→ Basically determining block boundaries by blocking key similarity, conflating similar keys. How is this not incrementally adaptive?

S
u
p
er
vi
se
d

ApproxRBSetCover
Learn disjunctive blocking schemes by solving a weighted set cover problem.
→ This seems to be quite a remarkable approach that is quite different from the standards.
ApproxDNF
Greedily learns a conjunction of up to k predicates that maximize the ratio of positive and negative covered instances.
→ Probably a different approach to the same task.
Blocking Scheme Learner (BSL)
Adapt the sequential covering algorithm to learn blocking schemes that maximize RR and while maintaining PC above a threshold.
→ Sequential Covering learns a disjunctive set of rules. Learn a rule, remove the data that it covers, then repeat.
Conjunction Learner
Minimizes candidate matches not only in the labeled but also in the unlabeled data.
→

BGP
A set of genetic programming operators, such as copy, mutation, and crossover, are iteratively applied to the initial set of blocking schemes.
→ Basically the whole scheme learning simply picks the atribute combinations that best discriminate coreference. This is one more way to do it.
CBlock
Every edge is a transformation function and every node holds the entities that result after applying all functions from the root down.
→ Similar to our approach if the representation features are chosen respectively and generalizations created for the nodes used here.
DNF Learner
Apply a matching algorithm to some entity pairs to create a labeled dataset and learn DNF blocking schemes.
→ Basically semi-supervised blocking scheme learning.

U
n
su
p
-

er
vi
se
d FisherDisjunctive

Use extreme TF-IDF to get gold pairs. Learn DNFs by Fisher feature selecting relevant shared keys in the pairs.
→ Another semi-supervised blocking scheme learning approach.

S
ch

em
a
-A

g
n
o
st
ic

N
o
n
le
ar
n
in
g

Token Blocking (TB)
Create a block for each token over all features.
→ Essentially just a another key-generalizing preprocessing step to Standard Blocking.
Attribute Clustering Blocking
Group attributes by similar values and use (group,token) pairs to determine blocks.
→ This is a key-generalization that focuses on generalizing the attribute rather than the value of attribute-value pairs.
RDFKeyLearner
Derive attribute discriminability from #distinct values and attribute coverage from #entities having it. Use the mean to select blocking keys.
→ The mean is a rather arbitrary connection for this tradeoff. Very similar to tf-idf. Why was the latter not used instead?
Prefix-Infix(-Suffix) Blocking
Use URL domain, local identifier and format or anchor along with all tokens in the literal values as blocking keys.
→ Quite specific to URL-identified mentions.
TYPiMatch
Detect entity types in a co-occurrence graph connecting tokens with high co-occurrence. Apply token blocking over mentions sharing a type.
→ To call it a type seems unnecessary. It is a two-step blocking process.
Semantic Graph Blocking
Use semantic relations between mentions. Group mentions if they share a short enough path and this block is not too large.
→ This requires there to be relations annotated to actual mentions. In other words all mentions must occur in a relational context.

S
ch

em
a
-A

g
n
.

L
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g

Hetero
Represent mentions as normalized TF vectors and apply an adapted Hungarian algorithm for optimal assignment, followed by FisherDisjunctive.
→ What means assignment here?
Extended DNF BSL
Combine an established instance-based schema matcher with weighted set covering to learn DNF blocking schemes with at most k predicates.
→ Not sure what is learned in the DNF if there are no attributes? If all the values are learned then there must be many conjunctions.

Table 3.1: Block building methods as presented in the survey by Papadakis et al. [1]
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Rollup Canopies

• filled cell (true) ◦/◦ empty cell (false) ·/· removed value (false) • added value (true)

Figure 3.7: Describing static block cleaning methods in matrix terms. The final
matrices after ≈ are only schematic.

3.7.2 Block Processing

In the survey [1], Block Processing describes the refinement of the block-mapping created

under Block Building in the previous subsection. We have summarized these methods

in Table 3.2 and reproduce the taxonomy by Papadakis et al. [1] in Figure 3.6. Our

sparse matrix view can also be used to visualized some of these methods.

Block Processing methods that can be easily described and distinguished in the matrix

view are Static Block Cleaning methods. These concern modifications of x
f

⊞ that result

in a sparsification of the output x
x

⊞ (see Figure 3.7). The blocks b can be identical to the
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2 1 1◦◦◦◦ 1◦◦
1 2 1◦◦◦◦ 1 1◦
1 1 1◦◦◦◦ 1◦◦
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◦◦◦ 1 2 1◦◦◦ 1
◦◦◦◦ 1 1◦◦◦◦
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• filled cell (true) ◦ empty cell (false) · removed value (false) 2 integer value

Figure 3.8: Example of how comparisons can be cleaned based on number of shared
blocks as returned by the (sparse) dot product. Here at least two shared blocks are
required. Of course a mention x could also be attributed to a block b in a weighted way,
returning a (sparse) degree-of-overlap matrix. Also, the block-block matrix could be
weighted, e.g. inversely proportional to block-size. Almost all non-learning comparison
cleaning approaches can be defined in this framework. The survey by Papadakis et al.

[1] refers to this approach as redundancy-positive.

features f or the keys k used previously. In Figure 3.7, the size of each block is shown in

the top row of x
b

⊞. Block Purging removes the largest blocks – that is columns from

x
b

⊞. Note that this avoids the creation of all pairs of mentions in these blocks. Block

Filtering removes each mention from the largest block it is part of. This eliminates

considerably more pairs than cells dropped in x
b

⊞. In Size-based Block Clustering,

large blocks are split up and small blocks are merged. This boths removes and adds

pairs to the output matrix. MaxIntersectionMerge does not remove pairs but only

adds some by merging blocks that share the most mentions. Neither does Rollup

Canopies, which merges the smallest blocks but leaves the largest ones intact. As the

focus of Dynamic Block Cleaning is on a certain sequential order of operations, it cannot

be displayed as a single state of a matrix.

Nonlearning Comparison Cleaning methods are not displayed individually in the matrix

view, but most of them can be thought of as applying some threshold on a weighted

output matrix x
x

⊞ (see Figure 3.8). As they are directly operating on the result pairs,

they do not improve the computational complexity – unless one assumes the application

of the final similarity measure (and perhaps an expensive clustering algorithm) to be

much more time-consuming than the relevance test performed at this point. Most of

these methods exploit what is referred to in the survey [1] as redundancy positive, i.e.

some weight for a pair of mentions based on how many blocks they share followed

by some specific local or global threshold. If do not apply the Boolean dot-product

as before, but use integers or floating point numbers, nonzero cells in x
x

⊞ contain the

number of blocks shared. Finally, two Learning-based Comparison Cleaning methods

are mentioned, whereof the second is only a trick to reduce the amount of annotated

data required by the first.
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Block Purging
Discard blocks that exceed an upper limit on block cardinality.
→ Extremely primitive, but what about the mentions that are only in the purged blocks?
Block Filtering
Remove every mention from the largest blocks that contain it.
→ Here, no mentions are dropped, but sometimes the largest block might be the correct one? Are block sizes updated along the way?
Size-based Block Clustering
Hierarchically cluster small blocks and split large ones according to the tradeoff between intra-block similarity and block size.
→ The special aspect is that small blocks are merged.
MaxIntersectionMerge
Merge each small-enough block with the block that has the most mentions in common and is large-enough.
→ This should have a tendency to merge small blocks into large ones.
Rollup Canopies
Use positive examples to train a greedy algorithm that merges pairs of small-enough blocks to increase recall.
→ Here small blocks are merged and a different method is used for it.
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Iterative Blocking
Iteratively merge any new pair of detected duplicates in all blocks until convergence. Re-compare the result with all co-occurring entities.
→ I would rather call this a basic property that any ER method could have or not. Not sure how this related to blocking.
Block Scheduling
Process blocks in the order of their size.
→ Basically as primitive as Block Purging. Not sure why this is not under progressive resolution.
Block Pruning
Terminate block scheduling if the average number of executed comparisons per found duplicate falls below a threshold.
→ Makes sense, but it is simply a stopping criterion for block scheduling.
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Comparison Propagation
Use the mentions-block mapping to precompute all comparisons instead of processing all pairs in all blocks with redundant comparisons.
→ This is a straightforward approach, but it should require more space as you need to compute all comparison pairs first.
Comparison Pruning
Use the Jaccard coefficient to skip comparing mentions with different-enough sets of blocks.
→ This calculates a weight for each pair of mentions and applies a global threshold on the resulting graph.
Weighted Edge Pruning (WEP)
Create a graph that connects mentions if they cooccur in the same block. Weight edges by number of shared blocks and prune light-enough edges.
→ Not sure how this is different from Comparison Pruning except that the weight is calculated differently.
Cardinality Edge Pruning (CEP)
Retain global top k edges of blocking graph.
→ Just a specific way for a threshold.
Weighted Node Pruning (WNP)
Retain locally heavy-enough edges, e.g. by average edge weight of node neighborhood.
→ Just a specific way for a threshold.
BLAST
Define heavy-enough as the average of the maximum weights in two adjacent node neighborhoods.
→ Just a specific way for a threshold.
Cardinality Node Pruning (CNP)
Retain local top k weighted edges for each node neighborhood.
→ Just a specific way for a threshold.
Reciprocal WNPfiltering
Apply aggressive pruning that retains edges satisfying the pruning criteria in both adjacent node neighborhoods.
→ Just a specific way for a threshold.
Low Entity Co-occurrence Pruning (LECP)
Remove all those mentions from a block that have the lowest average edge weights within this block.
→ Make a mention-block matrix with the average weights and pick top rows for each column.
Large Block Size Pruning (LBSP)
Apply LECP only to blocks whose size exceed average block size.
→ This is a very minor modification of LECP.
Low Block Co-occurrence Pruning (LBCP)
Remove a mention from all those blocks where it has the lowest average edge weights among all blocks.
→ This makes sure that no mention is fully dropped from all blocks. Make a mention-block matrix with the average weights and pick top columns.
CooSlicer
In large-enough blocks, sort all mentions by average edge weight and place the least weighted mentions into a new block.
→ Basically instead of ignoring, making a new block. But I do not see why multiple low-weighted mentions should be in the same block.
Low Block Co-occurrence Excluder (LBCE)
Discard those blocks with the lowest average edge weight over their mentions.
→ Nothing complicated, drop entire blocks. However that would also remove strong associations within low-quality blocks.
Transitive LSH
Convert LSH blocks into a blocking graph and apply community detection to partition it. Stop when the largest partition is small enough.
→ A two-step approach that cannot really be generalized to other methods as it basically two black-boxes.
Canopy Clustering
Iteratively move a random mention as well as the most similar remaining mentions into a new block. Reasonably similar ones are copied, not moved.
→ Should be quite expensive.
Extended Canopy Clustering
???
→ ???
SPAN
Apply spectral clustering on the tf.idf-based similarity of mentions sharing keys to obtain a binary tree from which blocks are derived.
→ Feed sparse mention-mention matrix with tf.idf-similarity of key-sharing mentions to spectral clustering and obtain a dimensionality reduction.
Comparison Scheduling
Order comparisons by the respective edge weight and execute only those comparisons where both mentions have not been matched to any other.
→ Not sure why this is not progressive. This is probably only for clean-clean ER as clusters can be only of size two.
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Treat edge pruning as a binary classification problem representing edges to classify by ARCS, ECBS, JS, and the node degrees of adjacent mentions.
→ It seems not 100% instuitive why the pruning classification is cheaper than the coreference classification.
BLOSS
Restrict labeling cost by carefully selecting a training subset that is much smaller, but retains original performance.
→ This is merely a modification to reduce the requirements on training data.

Table 3.2: Block processing methods as surveyed in Papadakis et al. [1]
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Figure 3.9: Filtering taxonomy as defined in Papadakis et al. [1]
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Figure 3.10: Visualization of the task of filtering according to Papadakis et al. [1]
The essence is to jump from a given mention straight to its similar-enough partners,

i.e. by neighbors in total alphabetical order.

3.7.3 Filtering

In the survey [1], Filtering describes a family of methods that help to find similar

mentions given some reference mention (see Figure 3.10). As the task is to achieve this

without going through all mentions in the collection or in the current block, this is an

application of similarity search as discussed in Section 3.4. We have summarized these

methods in Table 3.3 and reproduce the taxonomy by Papadakis et al. [1] in Figure

3.9. Filtering can be applied on the entire collection or on individual blocks. Some

of the methods presented in the survey [1] use the popular Locality Sensitive Hashing

(e.g. ATLAS or BayesLSH, here called “approximate”). Other “basic” methods use

bounds like length difference (Length Filtering), q-gram overlap (Count Filtering)

or slightly more advanced bounds (Position Filtering, DivideSkip, FastSS). An

entire group of methods exploits such bounds based on string-prefixes (e.g. Ed-join

or Qchunk). Others perform a kind of approximate nearest neighbor search in edit

distance by exploiting redundancies and overlaps in the strings representing mentions

(e.g. PartEnum or B*ed Tree, here called “partition-based” and “tree-based”). The

most advanced Filtering methods strive to implement “Fuzzy Matching”, i.e. a gradual

(an approximate) interpretation of the matching relation, e.g. via signatures that overlap

when matching (Fast-Join) or via blocking predicates that should be satisfied for a
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Adaptive Filtering LIMES MultiBlock
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StringMap
Extended StringMap

Figure 3.11: Join-based blocking taxonomy as defined in Papadakis et al. [1]

match (Smurf). Essentially, the task of Filtering is to structure the search space to

efficiently exclude dissimilar pairs from further comparison. The main idea behind

Filtering is that some indexable properties are assumed to be a minimum requirement

or necessary condition for equality. Then, given a reference mention, one can pick the

minimum overlap requirements for this mention and use these properties to look up

related mentions in an inverted index. For example in Prefix Filtering, it is defined

that it is necessary for two strings to share the most specific character q-grams. Then

given some string-based representations, an index structure can be used to retrieve the

intersection of all mentions with the reference mention’s most specific q-grams (Boolean

retrieval). This is similar to a limited number of allowed hops in a subset partial order

graph of representations where generalizations like reference strings in PBI are added for

some/all strings in the original representations and subsets with only such generalized

features are hypothesized, tying together representations by greatest lower bounds.

3.7.4 Join-based Blocking

What is referred to as “Join-based Blocking” methods in the survey [1] is related to

Filtering in that methods of the latter family are deployed not on the input or output of

Block Building methods, but during its creation. This means that Filtering is applied to

get x
b

⊞, not on x
x

⊞. We have summarized these methods in Table 3.4 and reproduce the

taxonomy by Papadakis et al. [1] in Figure 3.11. In Adaptive Filtering, LIMES and

MultiBlock, bounds are applied in the blocking context, e.g. by applying length and

count filtering to the largest ones. The essence of Lossy Join-based methods like KLSH

or DeepER lies in mapping the original input representations into a different space (of

lower dimensionality), where string similarities are regarded and correspond to closeness.

An approach that lends itself well to this task is of course locality sensitive hashing as

discussed in Section 3.4. It is used in three out of five of the surveyed Lossy Join-based

Blocking methods and is prototypical for what is understood as Join-based Blocking

since it builds x
b

⊞, so that x
b

⊞ ·x
b

⊞

T

= x
x

⊞. Note how in contrast to filtering it does not

operate on the result x
x

⊞ but instead contributes to its creation. In Spacial Join-based
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Length filtering
Use length difference as an upper bound on edit distance.
Count filtering
Use common character n-grams as an upper bound on edit distance.
Position filtering
Use the difference between two positional n-grams as an upper bound on edit distance.
DivideSkip
Use prefix-, length- and position filtering, and efficiently merge the inverted lists of signatures.
FastSS
Obtain a string’s deletion neighborhood by removing a certain number of characters. Use it as a filtering criterion for edit distance.
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Prefix filtering
Represent strings as n-grams ordered by specificity. For two sets to be compared, their k most specific n-grams must overlap.
Ed-Join
Analyze the locations and contents of mismatching n-grams to further removing unnecessary elements from the most specific n-grams.
QChunk
Use the size of the intersection between the n-grams of one string and the n-substrings of another as upper bound for their edit distance.
VChunkJoin
Use non-overlapping substrings whereof each edit operation destroys at most two to determine whether two mentions can match.
PPJoin
Extend prefix filtering by the position of common tokens in the prefix to derive a tighter upper bound for set overlap.
PPJoin+
Also use suffix filtering to calculate the maximum number of tokens in each pair of corresponding partitions between the two sets that can match.
MPJoin
Add a further optimization over PPJoin to dynamically prune the inverted lists.
GroupJoin
Extend PPJoin with group filtering to treat all sets with identical prefixes as one. Multiple candidates may thus be pruned in batches.
AdaptJoin
Select longer prefixes for each set where appropriate. Prune a pair of sets if there are less than n common tokens in their extended prefixes.
SKJ
Use index-level skipping to group related sets into blocks. Use answer-level skipping for dynamic answer set programming.
TopkJoin
Retrieve the most similar set pairs using prefix filtering and the monotonicity of maximum possible scores of unseen pairs.
JOSIE
Realizes top-k set similarity search for large sets with prefix- and position filtering, minimizing set read cost and inverted index probes.

P
ar
ti
ti
o
n
-B

a
se
d PartEnum

Generate signatures based on the principles of partitioning and enumeration.
PassJoin
Create inverted indices for consecutive substrings to retrieve candidates. Minimize the number of substrings required to find candidate pairs.
PTJ
Increase the pruning power of partition-based filtering using a mixture of subsets and their one-deletion neighborhoods.
pigeonring principle
Arrange pidgeonholes in a ring and constrain the number of items in multiple boxes rather than a single one, which gives tighter bounds.

T
re
e-
B
a
se
d

Bˆed -Tree
Use edit distance to create an index based on a B+ trees for range-queries, top-k similarity queries and similarity joins.
PBI
Select prototype strings around which other strings are grouped. Index strings based on distance to their corresponding prototypes.
MultiTree
Obtain a global ordering to map each element to an integer, which is inserted into a B+ tree. Search for similar elements via range query.
Trie-Join
If a trie node is not sufficiently similar to each of a string’s prefixes, then its descendants cannot be similar either.
HSTree
Using edit distance, build a hierarchical index of consecutive substrings to support threshold-based and top-k string similarity search.

A
p
p
ro
xi
m
a
te

locality-sensitive hashing (LSH)
Map similar mentions to the same hash code. Hash each mention several times and compare mentions that share at least one hash code.
ATLAS
Search for similar pairs within detected clusters. Use random permutations to compute candidates and their similarity.
BayesLSH
Combine Bayesian inference with LSH to estimate similarities with probabilistic guarantees on the resulting accuracy and recall.
CPSJoin
Use a recursive filtering technique for set similarity search to obtain perfect precision and a probabilistic guarantee on recall.
LS-Join
Use character n-gram sharing as a necessary condition for local similarity.
pkwise
Detect substrings with overlapping contexts. Use token combinations in prefix filtering.
pkduck
Account for abbreviations. Extend prefix filtering and generate signatures without iterating over all strings derived from an abbreviation.

F
u
zz
y
M
a
tc
h
in
g

Fast-Join
Define similarity as maximum matching score in a bipartite graph. Use appropriate token subsets as signatures that overlap when matching.
SilkMoth
Use heuristics to select signatures. Compare each set with its candidates to reject those condidates for which certain bounds do not hold.
MF-Join
Use a frequency-aware partition-based signature scheme as well as count filtering and an upper bound on record-level similarity.
Smurf
Perform multiple-predicate matching through a random forest classifier learned via active learning. Efficiently reuse computations across trees.
AU-Join
Use character n-grams for synonym-detection and a taxonomy for taxonomy-based matching.

Table 3.3: Filtering methods as presented in the survey by Papadakis et al. [1]

methods StringMap and Extended StringMap, a similar goal is pursued, but here

the target space that representations are mapped into is specifically the Euclidean space.

3.7.5 Progressive Blocking

In the survey [1], Progressive Blocking refers to a process of repeatedly increasing the

number of compared pairs. The advantage is that in a large scale resolution scenario,
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L
o
ss
le
ss

J
o
in
-b
a
se
d Adaptive Filtering

Apply length and count filtering to the largest blocks while using an edit distance threshold on a dedicated non-blocking attribute.
LIMES
Use the triangle inequality to compute bounds and approximations of mention distances based on previous comparisons.
MultiBlock
Aggregate block collections for different similarity functions into a multidimensional index that respects the co-occurrence of similar entities.

L
o
ss
y

J
o
in
-b
a
se
d

KLSH
Apply k-Means to compressed feature representations to obtain disjoint blocks.
DeepER
Use word embeddings for mention representations and hash them into buckets with LSH. Create a block for each mention’s most likely matches.
semantic-aware LSH (SA-LSH)
Use the length of taxonomy paths to obtain semantic similarity of features and low-dimensional representations to combine with textual keys.
cBV-HB
Embed features into a compact binary Hamming space where misspellings correspond to specific distance bounds and logical operators apply.
HARRA
Use LSH to hash similar entities into buckets within which duplicates are merged and re-hashed. Repeat until convergence or abortion.

S
p
a
ci
a
l

J
o
in
-b
a
se
d StringMap

Convert keys to a similarity-preserving low-dimensional Euclidean space and cluster them into overlapping blocks.
Extended StringMap
Map mentions into an intermediate Euclidean space before mapping keys into another Euclidean space of lower dimensionality.

Table 3.4: Join-based blocking methods as surveyed in Papadakis et al. [1]

progressive blocking

schema-based

Progressive Sorted Neighborhood (PSN)
Dynamic PSN

Hierarchy of Record Partitions (HRP) Ordered List of Records P-RDS

schema-agnostic

Local Schema-agnostic Progressive SN
Global Schema-agnostic Progressive SN

Progressive Block Scheduling
Progressive Profile Scheduling

Figure 3.12: Progressive blocking taxonomy as defined in Papadakis et al. [1]
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Figure 3.13: Visualization of clustering one block and as a result iteratively merging
mentions x.

the resolution step can be triggered at some point and the resolution continuously im-

proves until the process is terminated due to time constraints. Continuous improvement

is not the only requirement. In addition, the goal is that in the sequential ordering of

comparisons, the ones that are most likely to lead to detected duplicates come first.

Even more, the expectation is that for any pair of mentions compared, all pairs with

a higher coreference likelihood have already been compared. As this is a very strict

requirement, the optimal solution can only be approximated. If we consider a mix of

precision and recall as our definition of quality, then the continuous greedy increase

in quality is usually achieved by an increase in recall. This is natural as the process

involves checking more and more pairs, which automatically leads to an improvement

in recall. It would however not be unthinkable to start with a rough partitioning that

is continuously refined and would correspond to an increase in quality through growing
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precision. We have summarized these methods in Table 3.5 and reproduce the taxon-

omy by Papadakis et al. [1] in Figure 3.12. Because of its usefulness, progressiveness

has been embraced as a central component in this thesis and is discussed in Chapter 6.

Aspects that favor progressiveness are already inherent in some of the methods previ-

ously mentioned. For example in Incrementally/Accumulative Adaptive Sorted

Neighborhood, The window size could be increased not just based on local conditions,

but also on a globally increasing factor. This is indeed what is done in Progressive

Sorted Neighborhood and even more so in Dynamic Progressive Sorted Neigh-

borhood. In Size-based Block Clustering, the splitting and/or merging of blocks

could be continued over time to achieve smaller or larger blocks (cf. Figure 3.13). The

straight-forward result of this would be a Hierarchy of Record Partitions or the

more memory-friendly Ordered List of Records. For Dynamic Block Cleaning meth-

ods like Iterative Blocking or Block Scheduling, it even seems that they already

satisfy the requirements of Progressive Blocking. Finally, P-RDS adopts the blocking

implemented by locality sensitive hashing to be progressive. Furthermore, the survey [1]

distinguishes Schema-agnostic Progressive Blocking methods. Local Schema-agnostic

Progressive Sorted Neighborhood substitutes attributes in attribute-value pairs by

closeness in the alphabetical ordering of values. For all windows over the alphabetical

order, sort the representations therein by co-occurrence frequency as an indicator of

coreference-likelihood. Global Schema-agnostic Progressive Sorted Neighbor-

hood improves this by skipping pairs that have already been compared. Progressive

Block Scheduling clusters smaller blocks first, assuming that they are more concise.

Within each block, higher weighted pairs are compared first. Weights might be com-

puted as number of other blocks shared. It is not clear how Progressive Profile

Scheduling avoids visiting all pairs during the blocking process when it computes the

average comparison weight for each mention for prioritization. Also, if all pairs mentions

are compared to a given reference mention before another reference mention is chosen,

this does not seem to achieve a good global progression.

3.7.6 Parallel Blocking

In the survey [1], each family of methods (like Block Building) is accompanied by a

description of how individual methods have been parallellized. Although this is often

realized in the MapReduce framework, the details usually apply only to an individual

method and are therefore not as interesting on a general basis. With respect to our

matrix-based framework, Figure 3.14 shows how a sub-matrix of the target x
x

⊞ can be

computed by taking some rows from x
f

⊞ and some columns from x
f

⊞

T

. Using efficient

matrix-multiplication algorithms, there should be some computational overhead involved
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S
ch

em
a
-b
a
se
d

Progressive Sorted Neighborhood (PSN)
Apply an increasing window size w to a sorted list of mentions until termination.
→ Straightforward, but should introduce a lot of redundancy. Only total alphabetical ordering.
Dynamic PSN
Adjust the processing order on the fly, based on where most duplicates have been found so far.
→ Makes sense. Why use the arbitrary order from left to right when inter-window (in contrast to intra-window) order is free.
Hierarchy of Record Partitions (HRP)
Create a hierarchy of blocks that is resolved level by level, from the leaves, which contain the most likely matches, to the root.
→ The straightforward result of consecutive merging of smaller blocks into larger ones.
Ordered List of Records
Turn the HRP into a list of records sorted by their likelihood to produce matches with neighbors, which gives a lower memory consumption.
→ This probably means that we skip the redundancy of re-clustering blocks after merging. Not sure how this saves memory rather.
P-RDS
Make LSH-based blocking progressive by processing hash tables in the order of the number of found duplicates in previous buckets.
→ LSH has multiple hash functions to capture similarity. This determines their order of application to find most collisions early.

S
ch

em
a
-a
g
n
o
st
ic

Local Schema-agnostic Progressive SN
For each window size, order comparisons within each window over the sorted mentions according to the mentions’ co-occurrence frequency.
→ Alphabetical closeness for comparison decision, cooccurrence for order of comparison.
Global Schema-agnostic Progressive SN
Given a predetermined range of windows, eliminate all redundant comparisons within them.
→ Should address the above mentioned redundancy problem of PSN, but not sure how.
Progressive Block Scheduling
Order blocks in ascending number of comparisons and prioritize all comparisons per block in decreasing weight.
→ Process small blocks first and within them high-weighted comparisons. Not sure where the weights come from.
Progressive Profile Scheduling
Order mentions by decreasing average comparison weight and prioritize all comparisons per mention in decreasing weight.
→ Need to go over all comparison weights first to get average. Determines the order of nonzero cells in a sparse comparison matrix.

Table 3.5: Progressive blocking methods as presented in Papadakis et al. [1]
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Figure 3.14: Basic batching for blocking matrix multiplication. Here, batch-size is 2.

with this computation of sub-matrices as the potential for time-saving shortcuts is more

limited on a smaller matrix and ultimately all target cells are still computed. However,

almost arbitrarily many cores can work on the product at the same time. Furthermore,

the space consumption can be controlled – in particular if the target matrix is never

computed fully at once, but verification is performed once a batch is complete and all

non-verified duplicates are discarded.

3.7.7 Contextualizing our Approach

We have presented the outline of our approach in Chapter 2.2. In this section, we

compare it to the other blocking methods described above and see how and to which

extend it can be related to them by smaller modifications or by explaining it in the

same framework. In the sparse matrix-view, we can describe our method as x
k

⊞ ·k
k

⊞ ·k
x

⊞,

where x
k

⊞ maps mentions x to representation keys k, k
k

⊞ implements the subset/super-

set partial order over representations and k
x

⊞ is the transpose of x
k

⊞. In contrast to

many Block Building methods, our approach does not focus on a certain type of fea-

tures, although it is of course to be expected that it works better for some than for

others. On the representations k, the subset/superset partial order constitutes a kind

of Sorted Neighborhood by the cover relation. However this neighborhood is defined
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Table 3.6: Characterization of non-learning block building methods as discussed in
Papadakis et al. [1]. Distinguishing whether and how features are grouped by similar-
ity and with which threshold, what features are extracted and whether a mention is
represented by one or multiple features. If 1 billion mentions are feasible can only be
guessed. We only check-mark those methods that control block size. The ability to be

schema-agnostic comes from Papadakis’ definition.
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on a partial, not a total order. Progression is basically an incrementally increasing win-

dow (as in Progressive Sorted Neighborhood) over this partial order. In addition,

our method can use some aspects of Size-based Block Clustering, when we use a

redundancy factor on the edge weights between representations/blocks (see Chapter 6).

As it is recommended to use some threshold (e.g. 5k or 10k) on the maximum block

size to be clustered, in a way, Block Filtering is used in the progression when blocks

get too large. In contrast to many other blocking methods, our approach is guaranteed

to be disjoint, as we only merge blocks into larger ones (cf. Figure 3.13). The order of

these merges is captured in an implicit Hierarchy of Record Partitions. We do not

apply any Filtering or Join-based Blocking techniques. Our parallelization techniques

studied for connected component search in the subset/superset partial order build on

the basic idea displayed in Figure 3.14. In Supervised Blocking, one can learn a feature

to key mapping f
k

⊞ that defines the blocking keys k in terms of included features f .

We assume the source relation x
f

⊞ is fixed as it contains all the information available

for any x. Then as described in Section 3.6, we assume with x
k

⊞ij =
∏

l
x
f

⊞il ≥
f
k

⊞lj

that x
f

⊞ ⋆f
k

⊞ = x
k

⊞ tells us the representations that each mention x is a superset of,

i.e. all the potential blocks that dominate it. We define f
k

⊞ mostly by the feature com-

binations that we observe in the data (and some of there generalizations). Note that

k
f

⊞ ⋆f
k

⊞ = k
k

⊞ gives the superset partial order to be matrix-multiplied (dot-product)

with x
k

⊞ in x
k

⊞ ·k
k

⊞ ·k
x

⊞ = x
x

⊞.
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3.8 Integrating Blocking- and Clustering Methods

This section is dedicated to the integration of blocking and clustering both in terms of

technical interference and theoretical formalization. On the most general level, clustering

follows blocking. The purpose of blocking is to make the clustering task cheaper. Many

blocking methods return (either disjoint or overlapping) subsets of the collection. Each

of these subsets can be considered a separate clustering task. If the subsets are disjoint,

the result of blocking followed by clustering is a modular decomposition of the collection.

If the subsets are overlapping, the transitive closure over all coreference-pairs determined

by clustering must be taken in order to achieve an equivalence relation over the entire

collection. Other blocking methods return not subsets of the collection, but pairs to be

compared, for example a minimum spanning tree of a subset. Here, clustering is not

applicable. Instead, a verification step applies a binary pairwise classifier that determines

whether a given pair is coreferent – or not. Again, the transitive closure must be taken

on the result to obtain an equivalence relation. Of course, any subset X of the collection

also corresponds to a set of pairs X×X, so the verification step could also be applied after

a blocking methods that returns subsets. This would amount to single-link clustering,

merging clusters depending on whether the distance of their closest elements is below

the coreference threshold. Usually, other clustering methods produce better results as

in one way or another they take into account multiple surrounding elements, not just

two – that is they consider to some extend the result of their decisions.

3.8.1 Integration by Generalization

Ultimately, if it returns subsets, blocking is just a cheap clustering method. Then, clus-

tering can be applied sequentially where each cluster on one level constitutes a new

clustering task on the next level. So in theory is it also possible to have not just the

usual two-step process, but multiple cascading rounds of clustering (i.e. with each new

level deploying a more expensive clustering method on the results of the previous one).

In Figures 3.15 we show a theoretical framework for clustering (and blocking) in general

that is intuitively accessible. In this framework, a number of points from the input

collection can be chosen as “connectors” by one property of the clustering method and

are then copied to a second level. The second property of the method determines how

to connect points to connectors. The result is a bipartite graph in which the transitive

closure returns the equivalence relation over the entire collection. There is currently

no obvious advantage of the graph being bipartite (i.e. very structured), except that

the transitive closure should be particularly easy to compute. However, this does not

exclude the possibility that the simplicity of the model may lead to practical insights



Chapter 3 Related Work

Single-Link

points

points

     

     

DBSCAN

core points

points

  

     

k-Means

means

points

  

     

EM-Algorithm

distributions

points

  

     

Blocking

minels

representations

  

     point connector
point chosen
as connector

copy point to
get connector

point related
to connector

 

 

 

 

 

  

Figure 3.15: Clustering methods in the bipartite graph view. In single-link cluster-
ing, each point is copied to be a connector and there are relations from points to all
close enough connectors. In DBSCAN all points that are central are copied as con-
nectors (core-points) and there are relations from all points to close enough connectors.
In k-Means random points are copied as initial connectors (cluster means). Relations
are between points and the closest connector. Means are iteratively updated for all
points assigned to the same mean (see also Figure 3.17). In EM clustering random
distributions are initialized as connectors. Relations are between all points and all dis-
tributions and weighted by the likelihood of the point in the respective distribution.
The distributions are iteratively updated according to these likelihoods. Ultimately, one
may filter the relations to be those connecting each point to the distribution in which
is has the highest likelihood. In blocking blocking keys are considered to be artificial
points added to the representation space (e.g. singletons for each feature or larger
sets AND-combining multiple features). Minimum elements are copied as connectors.

Relations are built by the superset relation between points and connectors.

in the future that significantly reduce the complexity of relevant operations and related

concepts or proofs. In single-link clustering each point is a connector and there

are connections from each point to all close-enough connectors. In DBSCAN [40], all

points with at least minPts points in their ϵ-neighborhood are connectors and there

are connections from each point to all points in their ϵ-neighborhood. In k-Means [89],

random points are initial connectors. There are connections from each point to its single

closest connector. Here, the connectors are changed after each iteration to be the mean

of their connected points (see also Figure 3.17). In EM clustering [90], connectors are

not copied from the collection but are initialized as random probability distributions.

However, usually the mean of these is taken to be a random point from the collection

and the variance is chosen w.r.t. the distances in the collection. There are connec-

tions between all points and all distributions and these connections are weighted by the

conditional probability of the point being produced by the distribution. The distribu-

tions are iteratively updated by according to the Expectation Maximization principle.

After convergence, one would probably keep only the connections from each points to
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Figure 3.16: Average-link agglomerative clustering in the bipartite graph view.
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Figure 3.17: K-means clustering process in the bipartite graph view.

Figure 3.18: Iterative connector updates in hierarchical and K-means clustering.

the distribution under which it is the most likely. As we have stated above, blocking

can be viewed simply a cheap clustering method. In this case, the following procedure

allows to integrate both traditional blocking techniques as well as our proposed method:

Blocking keys are added as artificial points to the collection. If the blocking key is a

single feature, this amounts to a singleton representation. If the key is a conjunction,

then this is a larger set. For example in author disambiguation, a popular key-scheme

is surname, first-initial, which leads to keys like J Smith. The connectors are chosen to

be minimal elements in the collection expanded by the artificial representations. These

minimal elements would usually correspond to the keys. The superset relation then

connects all points to the minimal elements that they satisfy in the sense that the fea-

tures required by the connector are all present in the point’s representation. In two of

the works underlying this thesis, the clustering process has been implemented success-

fully by a probabilistic average-link agglomerative clustering. Average-link clustering

is attributed to Sokal [91]. Figure 3.16 shows how the initial connectors correspond to

all points in the collection (singleton clusters) and then clusters (i.e. connectors) are

iteratively merged depending on the average link between them. When two connectors

are merged, then the connections going from points to the individual connectors now

go to the new connector. Our progressive blocking method performs the same kind of

iterative operation on the blocking level.
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Figure 3.19: Relationship between blocking and clustering. Although blocking is
simply a cheap clustering method, different separation steps can be concatenated to
repeatedly break down large collections. On the left this is done by partitioning, leading
to a modular decomposition while on the right overlapping clusters are allowed. On the
left, connected components are computed (i.e. the transitive closure i.e. repeated

matrix power Mk) while on the right, the matrix power is applied only once (M2).

3.8.2 Integration by Combination

In Figure 3.19, we show how blocking and clustering are integrated. In disjoint blocking,

each block corresponds to a completely separate clustering task. The clusters found in

each of them correspond to the equivalence classes of the final equivalence relation. In

non-disjoint (overlapping) blocking, each block is separately clustered, but the resulting

clusters must be merged by the transitive closure if they share one or more points. If the

blocking process returns pairs to be verified, then the block-connectors correspond to

these pairs, i.e. each blocking connector connects exactly two points (see Figure 3.20).

In the verification step, these are either confirmed or split up into two connectors. Then,

we continue as with non-disjoint blocking by merging overlapping clusters.

In order to summarize integrative frameworks for blocking and clustering popular in the

literature, we consult an additional survey by Christophides et al. [11]. In Papadakis

et al. [1], the entity resolution pipeline is defined as

Block Building → Block Cleaning → Comparison Cleaning → Filtering → Verification

where Block Cleaning and Comparison Cleaning both go by the general term Block

Processing. In Christophides et al. [11], the pipeline is

Blocking → Block Processing → Matching → Clustering



Chapter 3 Related Work 83

Pairwise blocking followed by verification

pairs

verify task 1verify task 2verify task 3 verify task 4

labels 1labels 2labels 3 labels 4

 

13

 

2

 

4

 

5

543432 13

      

54312

Figure 3.20: Relationship between blocking and verification. This is visualized in the
same framework as blocking followed by clustering (see Figure 3.19).

suggesting that Blocking is the same as Block Building. Here, Filtering is not considered.

Matching refers to a pairwise classification of coreference, which should be the same as

Verification. Clustering actually is a misnomer here, because it simply refers to the

transitive closure over the matching decisions. As has been pointed out earlier, there

is a difference between the transitive closure over pairwise classifier decisions and a

“real” clustering process because the latter usually takes into account multiple points to

consider to some extend the consequences of its decisions. Figure 3.19 shows on the left

how disjoint blocking is followed by a separate cluster task for each block that outputs

the final mention clusters considered coreferences. On the right, overlapping clusters

make it necessary to keep track of identical mentions in different clusters to later apply

a transitive closure over the final labelling and merge clusters with overlapping mentions.

Figure 3.20 has a minimal block of size two for each pair suggested by blocking. Upon

verification, the coreference is confirmed, otherwise revoked. Again the transitive closure

over the final labelling is required to obtain coreference partitions.

In addition to this pipeline arrangement of blocking and clustering or verification, there

is a distinction between such classic ER frameworks and those that take a more “in-

tegrative” approach. In Figure 3.21, we give a schematic overview of Static Blocking,

Dynamic Blocking and Real-time ER. In Papadakis et al. [1], this refers to “static match-

ing awareness”, “dynamic matching awareness” and “Real-time Entity Resolution”. In

Christophides et al. [11], the latter is called “incremental ER”, whereof Dynamic Block-

ing is considered a special case along with Dynamic Matching and Dynamic Clustering.

However, we think that there is a clear difference between Dynamic Blocking and Real-

time ER. In Static Blocking, the blocking step passes information in the form of blocks

to the clustering step, but the latter does not send any information back. Instead, if
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Figure 3.21: Static, dynamic and real-time blocking.

Progressive Blocking is performed, the next Blocking iteration only considers its previ-

ous output as a starting point to compute the next (larger) blocks. In this case, the

one-way pipeline of blocking and clustering is repeated until termination. In Dynamic

Blocking, the same principles are applied, with the exception that the clustering step

feeds back its matching decisions to be considered by the blocking step as an additional

input on top of the previous blocking state. Perhaps the clustering step would also

consider its previous matching decisions in addition to the new blocks it receives from

blocking. Finally, in Real-time ER, a completely different setup is assumed. Here, the

ER method is continuously presented with a batch of new entity mentions, which it has

to integrate into the existing disambiguated collection. In some cases, it may be allowed

to query the collection for some context information before sorting the new mentions

into the index (cf. query-based in Christophides et al. [11]) or it has to go directly to

the correct point in the index (cf. streaming, ibid.). The dynamicity here lies in the

source itself, which forces the ER process to adapt in a dynamic fashion. The main

challenge is the efficient implementation of index updates. As this is a very technical

question and tightly bound to the deployed technology, it is not useful to go into great

detail here. Generally speaking, it requires a pairwise classifier to connect new mentions

to the collection and a cheap update of the transitive closure – that is if redundant

operations are to be avoided. Otherwise, a simple means is to re-cluster all blocks that

at least one new mention has been added to. Coherent integration and resolution in the

light of the mutual interdependence of blocking and clustering decisions inherent in the

transitive closure of matching decisions (as in Dynamic Blocking) presents the greatest

challenge to Real-time ER. In our work, we assume a static blocking (note that this

does include Progressive blocking in our view) but acknowledge that only a Real-time

ER method can offer full usefulness in a real-world Big Data resolution scenario that is

very likely to include a dynamic source of entity mentions. To this end, one should note

that even more challenges like the “un-learning” of decisions and facts in the context of

privacy-related forget requests may apply [92].







Chapter 4

Clustering: Effective

Unsupervised Author

Disambiguation with Relative

Frequencies

In this chapter, we explore clustering for entity resolution based on the example of

grouping author mentions into real-world author entities. This work was undertaken as

a first project to explore the task of author disambiguation. The goal was to device a

simple method that can be implemented to run at relatively large scale and achieves

good performance. Fortunately, it was possible to use the Web of Science (WoS ) as a

very large high quality database that even contains a large number of author annota-

tions in the form of researcher-ID’s. A focus was put on developing a useful similarity

measure for mention-mention and cluster-cluster similarity in an agglomerative cluster-

ing framework. In addition to the clustering method itself, this work has given hints

towards the importance of the blocking scheme, the peculiarities of name-matching, the

importance of a good stopping criterion in the context of the development of the (hid-

den) precision-recall curve, the potential deceptiveness of plain performance numbers

and the necessity of a large-scale annotated benchmark for comparing different author

disambiguation methods. The method presented in this work was later re-implemented

by Tekles and Bornmann [93] and compared to other methods. It was found that the

stopping criterion does not work as well for very large problem sets, but that in general,

the similarities perform best among a number other non-rule-based approaches.

87
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4.1 Overview

A similarity measure was invented that has the properties of a conditional probability

p(x|y). This means that it is not symmetric, which is why implicitly, the maximum of

p(x|y) and p(y|x) is used, i.e. it is sufficient if the similarity in any direction is below the

threshold, and possible merges are sorted regardless of the direction. Whether a merge

of x and y is due to p(x|y) or p(y|x) is obviously irrelevant for the result. The condi-

tional probability considers the expressiveness of a feature by automatically weighting

rare features higher and it aggregates mention-mention probabilities in an additive way.

The advantage of additive over multiplicative aggregations (and conditional over joint

distributions) is that it is less likely to produce zero or extremely small probabilities.

Also, it can be better implemented as a dot product over matrices. A general advantage

of a probabilistic measure is that a simple consistency test can be done by adding up all

probabilities to check if the result is one. This is a necessary condition for the measure to

be implemented correctly and is extremely unlikely to happen due to chance (i.e. it can

be considered sufficient for validity). During the deployment of the method, a general

suspicion as to whether the results were really as good as measured led to the devel-

opment of a visualization technique that draws the agglomerative clustering process in

terms of precision and recall development as well as the number of clusters. A crucial

parameter turned out to be when to stop merging clusters as the similarity is powerful

for determining best merges, but does not assess itself as to whether it is high enough.

Furthermore, suspicion regarding the comparability of results reported in various related

works let to the second focus of the work on investigating possible evaluation pitfalls

or ways to manipulate experiments to produce good results for any method. A central

aspect in this context is the blocking scheme and the aggregation of the results over

all blocks. A blocking scheme that produces small blocks can lead to good results for

any clustering method if performance is measured for each block separately (e.g. “How

well can we disambiguate J. Smith? How well R. Myers? T. Powell?”, etc.) and then

aggregated without considering the individual problem sizes (macro average instead of

micro average). Using the blocking scheme of surname,all-initials, most blocks only

contain one annotated author, which means a trivial baseline combining all mentions

in a block performs very well. As a consequence, the clustering method was evaluated

individually for different problem sizes, where problem size is measured by number of

distinct authors. This information is obviously only available to the investigator, not to

the clustering method. For larger problem sizes (i.e. more than one real-world author),

the trivial merge-all baseline is not competitive. Some experiments were also conducted

to obtain insights on the contribution and usefulness of individual features like co-author

names.
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4.2 Terminology and Notation

In the following we list and explain the basic terminology used in the paper and the

notation that was used in this context at the time.

R author names, i.e. blocking representations, i.e. blocks, e.g. J. H. Doe

X set of all mentions in a certain block, with a certain name

x author mention

C clusters, i.e. a partitioning of mentions X

C author, i.e. set of mentions x, i.e. a partition in C

F (x) bag of features for mention x

f a feature f

#(f, x) how many times feature f is observed with mention x, basis for all probabilities

#(f) how many times we have seen feature f overall (either in name or in collection)

#(x) how many features mention x has

#(C) how many features cluster C has through its mentions

l stopping criterion, i.e. threshold

α, β parameters of linear function for stopping criterion

p(C|Ċ) probability of cluster C given cluster Ċ

p(x|ẋ) probability of mention x given mention ẋ

score(C|Ċ) asymmetric similarity of two clusters aggregated over all feature-types

ftype a feature-type, e.g. co-author names, where a feature is e.g. J. H. Doe

pftype(C|Ċ) probability for one specific feature-type

p(x|C) probability of a mention x to be in a cluster C

Ccor correct clustering, i.e. gold partitioning of mentions in a block

Csys system clustering, i.e. computed partitioning of mentions in a block

pairs(C) all pairs (x, ẋ) in a mutual cluster C ∈ C

PpairF1,RpairF1 precision, recall in pairF1 measure

PbCube,RbCube precision, recall in bCube measure
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4.4 Discussion

4.4.1 Probabilistic Similarity Measure

There is a small mistake in the paper as in joint probability discussed in Section “Vari-

ations” is never actually defined. It should be simply

p(C, Ċ) = p(C|Ċ) · p(Ċ)

where p(Ċ) was defined in the paper. It turned out that the conditional probabilities

offer a much better estimate of cluster similarity than the joint probability, the reason

for which was guessed to be the fact that the factor p(Ċ) rewards merging large clusters,

which establishes a self-reinforcing tendency because merged clusters are larger and are

then more likely to be merged again, and so on. Instead of taking the sum over all p(x|ẋ)

to aggregate p(C|Ċ), the max could also be taken, implementing a single-link clustering.

However the results were not better and the computational cost was higher as it cannot

be implemented in basic matrix multiplication. The smoothing parameter ϵ was not

tuned, which has been criticized in the reviewing process. However its only purpose

was to prevent zero-probabilities. A faster dynamic-programming implementation of

the conditional probabilities was later developed and is presented in Chapter 6. Here,

also a slight modification was introduced where we multiply #(f) by 1000 to prevent

very small values, which led to better performance. As p(C|Ċ) is computed over all

pairs x, ẋ ∈ C × Ċ, the score for a merge of clusters C and Ċ cannot be computed for

very large clusters due to quadratic complexity. For example two clusters of size 10k

require 100M comparisons, which should be roughly the borderline of what is feasible.

Remember that this has to be computed for all possible cluster pairings. Due to the

sparsity of the mention-feature matrix #(f, x)⃗ underlying #(f, x), using the sparse dot-

product of #(f, x)⃗ · #(f, x)⃗ T
should improve the feasibility considerably, although this

does not affect the theoretical worst case complexity.

4.4.2 Feature Types and Weights

Eight feature-types were used and listed in the paper. Their selection was not tuned but

based on common sense and what was available in the data. We can add the following

grouping of feature types according to their rough function for determining the likelihood

of two mentions referring to the same real-world author:

Topics Terms and Categories
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Strong author indicators Affiliation and Email

Peers Coauthornames and Refauthornames

Mostly irrelevant Keywords and Publication Year

It was attempted to learn a weighting of these feature-types with respect to their impor-

tance for disambiguation. For this purpose, eight-dimensional vectors were built with

the conditional probabilities pftype(x|ẋ) for each feature-type. From the researcherID

annotation, a balanced number of mention-cluster pairs (x,C) to be classified as be-

longing or not belonging were sampled. The weights learned by a linear classifier were

used as feature-type weights. The following weighting can be assumed to reflect the

importance of the individual feature types:

• 33% Topics: 15% Terms and 18% Categories

• 30% Author indicators: 20% Affiliation and 10% Email

• 32% Peers: 20% Coauthornames and 12% Refauthornames

• 5% Mostly irrelevant: 3% Keywords and 2% Publication Year

So the relevant groups of feature-types receive roughly one-third attention. These

findings were also supported in an application-based setting by leaving out individual

feature-types when performing the author disambiguation task. As a uniform distribu-

tion of weights did not give worse results, it was supposed that the inherent weighting of

individual features by #(f) makes feature-types unnecessary. However as the optimal

weighting of the selected features happens to be relatively even, this might not be true

for all datasets. It can be guessed that using word embeddings instead of terms to detect

topical similarity would be better, and in fact, the formula could be adopted to make

use of such semantic features, but this was not explored in the work.

4.4.3 Stopping Criterion

While the similarities are surprisingly effective in determining coreference likelihood of

authors, the stopping criterion, i.e. the point from which on coreference is unlikely

turned out to be quite difficult to determine – especially with these particular proba-

bilistic similarities that have a very different scale depending on the number of mentions

to be clustered due to the requirement of summing to one. For problem sizes with up to

ten real authors, the stopping criterion’s linear dependence on the number of mentions

was acceptable, although it could already be noticed that it triggered a little late for
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size-10 problems. In a later study by Tekles and Bornmann [93], it was found that for

larger problems this shift continues, making the stopping criterion a clear weak point of

the model. Therefore they specifically trained a stopping criterion for various ranges of

number of mentions to be clustered. In a later work (see Chapter 6), we tried to device

a non-linear function with three parameters. This worked a little better but was very

tedious to tune. Hence, the problem of finding a good estimate of when the clustering

is optimal remains.

4.4.4 Blocking Scheme

In the paper, the surname,all-initials blocking scheme was used, which produces rela-

tively small blocks. Another popular scheme produces much larger blocks separating

mentions by surname,first-initial. Neither of those really models the matching possi-

bilities between different name-based representations. For example J. Herbert Doe and

John H. Doe match. When this project was undertaken, the relevance of such matching

relations became apparent, but was not yet formalized well. This was taken up in the

second and third work (see Chapters 5 and 6).

4.4.5 Evaluation

In the paper, it was noted that at least five major steps in which experiments of author

disambiguation can differ:

1. data

2. annotation

3. blocking

4. disambiguation

5. evaluation

When comparing different AD methods, usually only the disambiguation step should be

changed. When comparing different blocking methods, only the blocking step should be

changed. However, when comparing experiments from the literature, it becomes clear

that all of the above aspects differ or may differ (i.e. not all details are reported). For

example in our evaluation, we count coreference labels for all mention-mention pairs in-

cluding the obvious (x, x) and (x, ẋ) when (ẋ, x) is already recorded. This corresponds

to taking the entire mention-mention matrix into account, while Levin et al. [94] sug-

gest using only the upper diagonal, which however is not defined for size-one clusters.

A more detailed discussion of comparability issues can be found in the paper in Chap-

ter 6. Currently no large-scale benchmark exists that keeps data and annotation fixed.
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Blocking techniques could be reproduced relatively easily and evaluation measures could

also be standardized if attention is payed to details like micro- or macro average. In

principle the Web of Science could be used to create a constant benchmark as it is of

large scale and has a large number of annotated author identities. However, this would

require to create a snapshot of the continuously changing collection. Such re-processing

is impeded by the proprietary nature of the data, which also makes it impossible to

share the benchmark. Consequently, the only option is currently to re-implement ex-

isting methods, which is very time consuming and error-prone. Regardless, Tekles and

Bornmann [93] have taken on this challenge and compared a number of methods along

with our proposal. In the paper presented in this chapter, another approximate solution

was found. By separating results by true problem size (number of real author identities

in the current block), the dependence on the factors data and annotation is reduced and

shifted towards a collection independent measure of difficulty, i.e. the number of authors

that would have to be distinguished in a perfect result. The goal was to encourage other

groups to also report results in this way, so that some comparability is achieved. Of

course, this is not failproof as the size-distribution in terms of number of mentions over

the different real authors also matters. For example if most correct clusterings have

only one large cluster while the remaining ones are of minimal size, then the difficulty in

terms of distinguishing coreferent and non-coreferent pairs is actually similar to having

just one real author. Our evaluation in this paper can be criticized retrospectively for

only showing results of problems with up to ten distinct authors. There are some names

for which there are thousands of different annotated authors. A bigger problem is that

the recall estimates were only taken within each block, i.e. missed coreferences across

blocks were not recorded. The reason is the growing computational complexity of finding

them. The task of evaluation can be broken down to finding the number of true pairs

(T ), positive pairs (P ) and true-positive pairs (TP ). P can be computed easily as the

sum over the squared system cluster sizes, likewise T as the sum over the squared gold

cluster sizes. TP however is more expensive to compute as for each pair a comparison

is required (e.g. check for each positive pair whether it is true). Later, some tricks have

been developed to make this more feasible. These are described in Chapter 7. From our

work in Chapter 5 we know that the blocking-based recall for the problem sizes 1-10 and

the all-initials scheme is 96%, i.e. 4% of the pairs that should be found are missed in T

for this paper as they cross block boundaries. For larger problem sizes, this goes down

to almost 90%, which makes the disambiguation task seem considerably easier than it

actually is. A good compromise is to compute recall within surname,first-initial blocks

as this is as high as 98% across all problem sizes.







Chapter 5

Matching and Blocking: The

Impact of Name-matching and

Blocking on Author

Disambiguation

In this chapter, we model the relationship between matching and contradictory blocking

representations based on the example of author mentions in the Web of Science. The

underlying work was a result of tackling open questions arising from the realization of

the blocking step’s importance in the previous work. The literature on AD blocking was

very limited. It was unclear to which extend the disambiguation task is already solved by

blocking but first indications (i.e. the merge-all baseline) pointed into the direction that

blocking and clustering follow the Pareto principle in that blocking is the proverbial 20%

effort to achieve 80% of performance (in fact the ratio is more extreme). It was apparent

that blocking in AD was always done based on name-components such as surname(s),

first names and first name initials, and that different levels of name specificity (in the

sense of presence of those components) were available in the data and required in the

blocking schemes. However, there was hardly any literature describing the distribution

of such levels of specificity in datasets and none describing the relationship between

different name representations or blocking schemes in general. This was despite the fact

that it was clear such relationships exist and are non-trivial as they do not form an

equivalence relation, for example John Doe and J. H. Doe matching and John Doe and

Jack Doe being contradictory although sharing the generalization J. Doe. The goal of the

paper was to (a) shed a light on the distribution of completeness of name representation

in the actual data (again, the WoS was used) and (b) uncover the matching relationship
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between different blocking schemes. It was only natural to also compare the performance

of different blocking schemes in this context.
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5.1 Overview

In the proposed model for name-based blocking, relationships between different schemes

(uninstantiated name representations) and between matching names (instantiated rep-

resentations) are the same. Not all feature-combinations make sense. For example it

makes no sense to consider a first name to be present but not the corresponding ini-

tial.The nodes in the matching graph in Figure 2 were established starting from the

most general assumed representation surname, first initial using the COMPLETE and

the ADD relation, adding first name information if only an initial was present or another

initial, respectively. This allowed to order different name representations in a directed

acyclic graph as in Figure 3, and to identify existing blocking schemes in this graph,

as well as to define new schemes based on the observations. In general, a blocking

scheme was defined to be a set of nodes to be isolated by removing all edges to and

from it. For example the surname, first initial scheme can be implemented by isolating

all nodes that do not have a surname and a first initial. J. Doe and K. Doe would

thus be separated by isolating Doe. Unfortunately, the all-initials scheme cannot be

implemented in this way, but has to be computed differently. Nevertheless, it was easy

to compare different blocking schemes against the WoS gold annotation in this frame-

work. This answers both the question of which percentage of the overall disambiguation

performance is already achieved by blocking and which blocking scheme is the most

effective in terms of precision and recall. An additional new type of blocking scheme

was proposed on the basis of frequency information annotated in the graphs of name

representations. If a name has an even distribution of specifications, then it is isolated,

because intuitively, there is a lot of confusion regarding the description of the people

going by those names, which is likely to be the result of most of them being separate

individuals. For example, if J. Doe has a lot of specifications like John Doe, Jinger Doe,

Jenna Doe, J. K. Doe, J.Y. Doe, then these are likely to correspond to a relatively even

distribution of observations and to mostly different people. On the other hand if Jinger

Doe only has one specification Jinger A. Doe, then this is likely to describe the same

person. This is also an indirect measure of the “parent’s” specificity in the data, because

unspecific names will have more observed specifications. The evenness of the distribu-

tion was measured by entropy, which was modified in later works to be a conditional

distribution corresponding to the confidence measure in association rule learning. The

main research questions were to compare blocking schemes against each other and to

assess their contribution to disambiguation in absolute terms as well as to determine to

which extend name-matching could be used as a replacement for author annotation. To

this end, three evaluation scenarios were undertaken by comparing blocking against gold

annotation, blocking against matching and finally matching against gold annotation.



Chapter 5 Matching and Blocking: The Impact of Name-matching and Blocking on
Author Disambiguation

5.2 Terminology and Notation

In the following we list and explain the basic terminology used in the paper and the

notation that was used in this context at the time.

N set of all names N

N Name, a set of mention x

x mention

X set of all mentions

A system authors (clusters)

G gold authors (clusters)

B set of blocks B

M matching pairs (not a partitioning)

B block, set of mentions x

PARENT cover-relation in subset partial order of name representations (ADD +

COMPLETE)

MATCH all pairs of non-contradictory name representations

BLOCK the pairs B ×B for all B ∈ B

GOLD the pairs G×G for all G ∈ G

ADD those pairs of PARENT where a first name is added

COMPLETE those pairs of PARENT where an initial is added

H entropy

C(N) covers of a name/node N in PARENT

p(N) distribution of carry counts over the node N ’s covers

P matrix, reflexive closure of PARENT

Q matrix, reflexive, symmetric closure of PARENT

P ′ matrix, edges removed from P according to blocking scheme

Q′ matrix, edges removed from Q according to blocking scheme

B/M blocking evaluated against matching

B/G blocking evaluated against gold identities

M/G matching evaluated against gold identities

S blocking scheme (except [inits]), i.e. names to be isolated
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γ problem size in terms of # distinct rID’s

Nγ set of all names with problem size γ
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5.4 Discussion

5.4.1 Erratum

There is a typo in the top-right corner of page 807, where “complete and initial” should

read “complete an initial”. There are further mistakes in the captions of Figures 8, 9

and 10. In Figure 8, it should read “compared to GOLD relation”. In Figure 9, it

should read “compared to MATCH relation” and the words “and complexity” should

be cancelled. In Figure 10, the words “and complexity” should be cancelled.

It seems very strange that [inits] has 90% precision in Table 3 for surnames with more

than 500 distinct rIDs, where we expect much more synonymy, even with up to three

initials for such frequent names. The same problem seems to apply for smaller problem

sizes as well as the most frequent surnames in Table 4. These questionable numbers also

appear in the plots in Figures 7 and 8, making this a quite profound problem. These

suspiciously high numbers also correspond to a strange mismatch compared to the paper

in Chapter 4, where the precision of all clusters being merged (Figures 6 and 7) is around

30-40% (here [inits] has been used as a blocking scheme) – while the numbers in this

paper are 99-100%. In fact, we cannot reproduce the numbers reported in this paper.

It seems likely that the results have been created separating problem sizes by number

of rID annotations rather than number of distinct rIDs. In this case, we can reproduce

the results with small deviations that might be due to negligible factors. In Table 5.1,

we report the new numbers for the [inits] scheme and the [f1] scheme both using distinct

rIDs and number of annotated rIDs for problem size.

The way the implementation of the evaluation was described in the paper is unnecessarily

complicated. instead, the following formulas can be used, which correspond to the

following SQLite queries, with P the number of positive pairs, T the number of true pairs

and TP the number of true-positives. These values are aggregated over all surnames

Table 5.1: New numbers computed with number of distinct rIDs rather than number
of rID annotations

f2 inits

sizes P R P R #

1-10 96 98 99 91 123k

11-25 72 99 86 91 1349

26-50 59 99 81 92 387

51-100 38 99 64 89 186

101-250 25 99 53 86 105

251-500 12 99 23 77 21

501-1000 4 99 11 76 8
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where the number of distinct rIDs is in the respective range, and then precision is

computes as TP
P

and recall as TP
T

.

P =
∑

B∈B

|B|2

SELECT SUM(size) FROM (SELECT pow(COUNT(*),2) AS size FROM names WHERE l=

$surname AND rID IS NOT NULL GROUP BY i1,i2,i3)";

T =
∑

G∈G

|G|2

SELECT SUM(size) FROM (SELECT pow(COUNT(*),2) AS size FROM names WHERE l=

$surname AND rID IS NOT NULL GROUP BY rID)";

TP =
∑

B,G∈B×G

|B ∩G|2

SELECT SUM(size) FROM (SELECT pow(COUNT(*),2) AS size FROM names WHERE l=

$surname AND rID IS NOT NULL GROUP BY rID,f1,f2,f3)";

The surnames are selected as follows:

SELECT l FROM (SELECT l,COUNT(DISTINCT rID) as freq FROM names GROUP BY l)

WHERE l IS NOT NULL AND freq BETWEEN $fro AND $to ;

where we assume that before, the DISTINCT was essentially dropped.

It can be expected that using distinct rIDs, the results in general are shifted to much

lower numbers but that the comparison between the different schemes remains the same

as the methods and their performance are probably not different, only the aggregation

of the results by problem size. Note that the isolation-based formulation of blocking

schemes in this paper has an advantage over a positive formulation, in that it separates

all names that are more general than the required scheme, while a positive formulation

iterating over all variations of the scheme’s features (as above over first, second and

third initial i1,i2,i3) merges them all in one block (i1=NULL, i2=NULL, i3=NULL).

However in the [inits] scheme, this does not make a difference because only names with

only surname(s) are not covered by the scheme. It would however make a difference

for schemes f3 and f4. It was also criticized in this paper that one can only guess

what happens in other works to mentions with names that do not meet the minimal

requirements. At least in this work, they are not discarded.
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5.4.2 Shortcomings and Later Improvements

When the paper was written, it was neither noticed that the resulting graph was a subset

of the subset/superset partial order over name representations, nor that the presented

graph for uninstantiated representations forms a lattice and the instantiated one forms

a semilattice. Neither was the relationship to formal concept analysis and association

rule learning discovered yet. For the sake of blocking, intermediate hypothetical nodes

between observed representations are actually unnecessary as they do not change the

connectedness nor the edge weights in the graph. Hypothetical common specifications

of observed representations should not be created as there are simply too many possible

unions of observed representations. In formal concept analysis, this is usually done to

create a lattice structure, but it is only feasible over a small vocabulary. It is generally

desirable to create such hypothetical specifications as they show the logical consequences

of assuming equivalence of two matching representations. For example if we say that

John Doe and J. Herbert Doe refer to the same person, than the true name would be

at least as specific as John Herbert Doe. If we can falsify this hypothesis, then the two

cannot be merged. But this has not been realized even in follow-up work due to the

above-mentioned complexity problems.

What is referred to as the PARENT relation in this paper is actually the the covering

relation known from lattice-theory. We cite the Wikipedia definition:

In mathematics, especially order theory, the covering relation of a partially

ordered set is the binary relation which holds between comparable elements

that are immediate neighbours. The covering relation is commonly used to

graphically express the partial order by means of the Hasse diagram.

– Wikipedia article on Covering relation1

what is called “cover” in this paper is a misnomer because it means almost the opposite

of the above definition. Instead, we have called it “carry” as a representation that carries

another one lies below it. This leads to the fact that the plots should be inverted top

to bottom with the most general representations at the bottom and the most specific at

the top to reflect the conventional mathematical notion.

Finally, the terms “parent” and “children” as used in this paper are potentially mis-

leading as they suggest that the DAG is a tree, while if anything, it is a semilattice.

However, we are also not aware of better terms for the general case of a DAG.

1https://en.wikipedia.org/wiki/Covering_relation, retrieved June 16th 2021

https://en.wikipedia.org/wiki/Covering_relation
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In this paper, have not yet used progressive blocking. All the blocking schemes derived

from the name-matching model are fixed. However, it is only a small step from this

model to introduce progressivity by iteratively merging nodes with edges indicating

a tight correlation. In contrast to assuming all names as separate blocks and merging

correlated nodes, isolating nodes in an otherwise connected graph as done in this paper is

less intuitive. This is particularly striking as the [inits] scheme could not be implemented

as a set of nodes to be isolated anyway.

5.4.3 Evaluation

Three major experiments, called B/G, M/G and B/M are done. B/G compares pairs in the

same block against pairs in the same gold author clustering and is the normal evaluation

of a blocking scheme against a gold standard. Here we have computed new numbers as

it seems that in the paper the number of rID annotations was used and not the number

of annotated authors. M/G compares matching pairs against pairs in the same gold

author clustering and measures the usefulness of matching as a proxy-annotation or for

semi-supervised learning. B/M compares pairs in the same block against matching pairs

and measures by recall the matches missed by blocking and by precision the dilution of

the match relation by the transitive closure over the (mathematical) covering relation

(covering is a subset of matching). In retrospect, it seems that this evaluation is not very

useful at least regarding recall, as there are many matches that are not really desirable

to model. For example, the more popular a surname is, the more likely it is that there

is at least one name with only the surname specified. This representation matches with

all other representations that are more specific. So a reasonable blocking method which

isolates the surname-only representation will miss a lot of matches, but these matches

were not important to model in the first place.

We now go through the six research questions from the paper and check if their answers

as given in the paper’s conclusion section have passed the test of time.

RQ1: How to structure names, their variations and relations? The model reflected in

Figure 2 of the paper is still valid and very useful. It has also been generalized to any

kinds of features. Some more conventions and relations to other (mathematical) theories

and concepts have been discovered, but this mostly concerns the terminology.

RQ2: How to include name-matching in the blocking? The basic theory has not been

changed here. However, blocking schemes are now defined by than the set of nodes to

be merged rather than by the set of nodes to be isolated.
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RQ3: How do different blocking schemes perform? Although we have corrected the

compared blocking schemes’ results in absolute terms, we assume that their relative or-

dering remains the same. Therefore the statements regarding their relative performance

are probably still true.

RQ4: Are there better blocking schemes? This also concerns the relative performance

of different blocking schemes, which should not have changed.

RQ5: Can name-matching substitute author annotation? We would now answer this

question with “No”, because of the simple reason that the matching relation is not

transitive and therefore not directly comparable to an equivalence relation suggested by

the system. Applying the transitive closure to the matching relation will add a large

amount of false-positives in many cases.

RQ6: What impact has blocking on (the evaluation of) AND? The overall contribution

of the blocking step towards the final disambiguation result is diminished if the results

are aggregated by number of distinct rIDs, i.e. true number of authors (with a certain

surname). For smaller problems, blocking still contributes a large part of the final

performance. This was also confirmed in later research (see Chapter 6). As stressed in

the paper, performing a macro average over results for different blocks is not acceptable

as it mainly reflect the distribution of problem sizes rather than the performance of

the model. Usually there are many trivial tasks that are perfectly disambiguated and

their ratio in proportion to the overall set of tasks then dominates the result. This was

discussed in some more detail describing problem size as a confounder in the paper in

Chapter 6. Optimally however, no average should be taken, but the relevant counts of

P, T and TP should be aggregated over all tasks to avoid what is known as Simpson’s

paradox [95].





Chapter 6

Progressive Blocking:

Lattice-based Progressive Author

Disambiguation

This work was meant to combine and refine the insights and methods from the clustering

paper (Chapter 4) and the blocking paper (Chapter 5) to directly view the contribution

of each task to the overall author disambiguation performance. In particular, from the

clustering work, we take the probabilistic similarity measure and agglomerative cluster-

ing as a blocking method and from the blocking work, we adopt and expand the idea of

arranging name-based representations of author mentions by the subset partial as well

as considering these representations’ observation frequency into account. In addition, a

number of improvements motivated by the literature and the ideas already established

in the previous projects were pending that should be implemented in this context. The

main such improvement was to embrace the notion of progressive resolution for author

disambiguation. Another was to better formalize the notions from the previous work,

like in particular the relationship between name-matching and derived blocking-based

equivalence relations. Due to the large scale, especially of the author annotation, we

have continued to use the Web of Science for our experiments.

In this chapter, we complete the definition of the name matching problem as building

the subset partial order over all entity representations under a minimal representation

(here surname, first initial). Then we derive and compare means for progressive reso-

lution through sequential block merging in the subset partial order, leading to specific

hierarchies of record partitions (HRP) for the author disambiguation problem.
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6.1 Overview

In this work, we propose continued block merging based on name matching and obser-

vation frequency to realize a progressive framework for author disambiguation. Initially,

each representation is considered a separate block. Then, blocks are iteratively merged

and clustered if their representations are decided to be sufficiently similar. This simi-

larity is efficiently implemented as edge weights in the subset partial order defined over

representations. These weights are assumed to indicate the coreference likelihood of

the author mentions in the union of the respective mention sets. A number of different

edge-weighting schemes are compared, but the main method, which also outperforms

all others is based on the representations’ observation frequency, specifically it is similar

to the confidence value as known from association rule learning. Progressiveness also

requires a new type of evaluation. We use the dedicated ec* measure to space out the

iterations on the x-axis proportional to the number of comparisons done during it. We

measure the number of emitted comparisons (ec) as
∑

B∈Bi
|B|2, where Bi denotes the

set of blocks in iteration i. This is the same as the number of pairs suggested by the

blocking scheme, i.e. P . In ec* as opposed to ec, this is normalized as P
T

. The objective

is to maximize precision TP
P

and recall TP
T

and minimize P
T

. When optimizing recall

against ec*, this trade-off is equivalent to optimizing precision for the suggested pairs

of the current blocks, thereby forcing an efficient suggestion with few false-positives.

Assuming that the set of suggested comparisons of a later iteration includes those sug-

gested earlier, this requirement formulates the goal of suggesting as many correct pairs

as possible as early as possible. To compare the effect of progressive blocking through it-

erative block merging and within-block clustering, one can plot the performance of both

against the ec* values of the respective progressive blocking scheme (i.e. performance

of blocking alone as well as blocking in conjunction with clustering – but both plotted

against the number of pairs suggested by blocking). In this work, edge weight modifica-

tion during the unfolding progression plays a central role, as performance varies greatly

depending on how the initial edge weights are modified. For example, we consider a

redundancy measure to discourage merging of small and large blocks as this can offer

little gain in true-positives. Hence, a number of possible baselines and configurations

are compared. The results are promising as our main method outperforms all other

variations and baselines. In the context of the evaluation, we have elaborated further

on the potential confounder task-scale that was already eluded to in the previous works.

We have also improved the implementation of the probabilistic measure introduced in

Chapter 4 by dynamic programming.
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6.2 Terminology and Notation

In the following we list and explain the basic terminology used in the paper and the

notation that was used in this context at the time.

x mention

X set of all mentions

Rx representation of x, set of attribute-value pairs

A set of all attributes

V set of all values

TRx
type of Rx, set of all attributes in Rx

#(Rx) observation count of Rx, how many times Rx is exactly observed

#̆(Rx) carry count of Rx, how many times Rx or a specification is observed

p(Rx|Rx′) probability of Rx given R′
x, edge weight between them

µRxRx′
cost factor for merging the node of Rx with that of R′

x

δ discounting parameter, % of observation passed on to specifications

∆Rx←R
x′

discount mass from Rx′ to Rx

tb blocking threshold, merge all blocks connected by higher weighted edges

d number of attributes, i.e. |A|

m number of mentions, i.e. |X|

n number of distinct representations

p(C|C ′) conditional probability of one cluster C given another one C ′

p(x|x′) and so on... see Chapter 4

f(C), f(C,C ′), f(x, x′), f({x1, x2}|{x
′}), f({x}|{x′1, x

′
1}) components of p(C|C ′)

td disambiguation threshold

G, f0 parameters of S-curve for td

[sufi ] surname, first-initial blocking baseline

[asis ] use name as is blocking baseline

[milo use all initials unless no other second initial exists

[inits ] surname all-initials baseline

[rdm ] completely random merge blocking baseline

[nbrdm ] random edge-contraction blocking baseline
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[base ] constant edge weights blocking baseline

[pnew ] blocking baseline solely based on µRxRx′

[base+pnew ] blocking scheme combining constant edge weights with µRxRx′

[base+disc ] blocking scheme using discounted edge weights

[pnew+disc ] blocking scheme combining discounted edge weights and µRxRx′

[1link ] single-link clustering baseline with p(x|x′)

[1link+cosim ] single-link clustering baseline with cosine similarity

TP true-positive mention pairs

P positive mention pairs

T true mention pairs

WEST selection of frequent English, German and Iberic names

MIDDLE selection of frequent Indian and Arabic names

EAST selection of frequent Chinese, Japanese and Korean names
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6.4 Discussion

6.4.1 Shortcomings and Potential Improvements

It should be mentioned that Figure 3a was taken directly from the paper in Chapter 5.

In this paper, we refer to edges as implementing the covering relation, but for example in

Figure 6, there are additional edges (e.g. from M. Ho to Michael Ho). Strictly speaking,

this notion only holds for the first iteration. These additional redundant edges do play a

role in discounting observation mass up the graph, but their effect has not been studied.

They could be removed by transitive reduction. There are still unnecessary unobserved

intermediate nodes. These are automatically removed in the first iteration as they have

outgoing edges weighted 1 and are merged with their specifications without changing

any existing blocks, since the blocks (i.e. sets of mentions) of unobserved representations

are empty.

As discussed in Chapter 2.2.6, contracting all edges with a weight above the current

blocking threshold is not strictly determined by the merging probability with the proba-

bilities encoded in the edge weights, as this would require a random walk. Furthermore,

an important simplified variant was not implemented and compared: Contract edges

top to bottom in the hierarchies, merging the most specific representation pairs first.

Despite being simpler, this might have results similar to the discounting model. Also,

within each specification level, pairs could be ordered according to the edge weights

between them.

We have not studied how to decide a good point for stopping the progression. Although

using a good clustering method, this is not required to prevent a drop in overall F1

(see Figure 11a), it should be desirable to know when performance is stagnating to save

computational resources. Obviously, this has to be done based on proxy measures that

somehow approximate the performance development against the annotated data.

In the matrix-based view introduced in Chapter 3.7, our model can be formalized as

the dot product of the mention-representations matrix with itself and an intermedi-

ate representation-representation matrix that stores the current state of the graph (see

Chapter 3.7.7). The resulting sparse mention-mention matrix suggests all the pairs to

be compared. This supports the impression that our approach could probably be sim-

plified considerably to foster easier adaption. For example: (a) for each super-block,

e.g. surname, first initial combination, build the covering relation over the subset par-

tial order of name representations; (b) sparsify the covering relation depending on the

state of the progressive blocking scheme; (c) use the above dot product to obtain the
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pairs of mentions that are in the sparsified covering relation and their representations

are sufficiently similar; (d) modify the dimensionality of the representations based on

which ones have been merged.

One should note that we aggregate the results iteration for iteration. This means that

we do not assume a parallelization where each surname, first initial super-block is

processed individually, but a turn-based model, where the first iteration is computed for

each super-block, then the second, and so on. The assumption of processing the entire

dataset in parallel poses the problem that the state of each super-block would either

have to be kept in main memory or stored on disk, where the latter can be expected

to require considerably more time. This problem was not addressed in this work. Also,

the problem of introduced redundancy is not solved. When two blocks are merged, their

union is clustered again. All previous clustering processes are wasted (in retrospect).

In fact, this problem is ignored as we only plot the cost for the current iteration by ec*

and not the aggregated cost from the first to the current iteration (the integral). It was

not clear from the ec*-literature if one is expected to do the latter or not. This might

be one reason why the variant using the redundancy measure µRxRx′
does not perform

very well: the redundancy it is trying to avoid is not directly reflected in the plots. In

future work, the actual integral over all iterations should at least be included in addition

to the other plots. Then, means to avoid recomputation might be rewarded.

Due to the fact that we apply a super-blocking by surname, first initial, some pairs

of coreferring mentions that cross these boundaries (e.g. where only surname is given

for one) might be missed in the targeted gold relation. This makes the task artificially

easier. However, the effect of this slight benchmark simplification affects all compared

methods and should not change their relative performance.

6.4.2 Evaluation

In the result plots, differences between the performance of some of the compared methods

look negligible, which is actually not the case, as is shown in the result Tables 2 and 3.

The performance of the different variants can be summarized as follows:

[rdm ] This is the worst performing variant as it merges any representations randomly

and does not consider the covering relation at all.

[nbrdm ] This variant performs slightly better than complete random merging, but the

difference is not pronounced when evaluated on the entire dataset.

[pnew ] The same statement holds as under the previous point.
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[base ] For the larger problem sizes, this variant performs considerably better than the

previous three, which is encouraging regarding our method of arranging blocks in

the subset partial order of their representations.

[base+pnew ] Adding the redundancy measure to the [base] variant does not improve

the performance as shown in our plots.

[base+disc ] This is our preferred variant and it outperforms all others, often quite

distinctively. However, as pointed out above, it might be that this is simply due

to the fact that it approximates a level-by level merging from top to bottom.

[pnew+disc ] This is the most elaborate variant in that it includes both the previous

one and the redundancy measure from [pnew]. However its addition does very

slightly deteriorate the performance as displayed in our plots.

Performance of the different baselines can be summarized as follows:

[sufi ] As we separate the data by surname, first-initial, this static baseline amounts

to merging all representations, that is the end point of our result plots. It’s poor

performance is obvious.

[asis ] This static baseline leaves all names as they are and uses the initial blocks,

meaning that its performance corresponds to the starting point of our plots. It

is clearly better than the previous baseline, but more advanced methods allow

considerable progressive improvements.

[inits ] This is a progressive baseline that represents mentions only by surname and

all available initials, that is it removes first name information. Furthermore, we

modify the edge weights in that they are computed exactly as the confidence value

from association rule learning, which avoids reflexivity.

[alli ] The static surname, all-initals baseline constitutes the starting point of the above

progressive baseline. It is much more expensive than the starting point of the other

progressive variants as removing first name information creates larger blocks. In

some subsets, this baseline performs quite well, in particular if one ignores how

expensive it is.

[milo ] This static baseline has its name from the method proposed by Milojević [35]. In

the performance plots, it describes a state that can be localized as somewhere after

the starting point of the progressive [inits] baseline. Since this baseline continu-

ously deteriorates from the starting point on, it does not seem that it is superior

to the [alli] baseline, in particular if one considers that it is more complicated.
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Retrospectively, we note that there is the danger of a confusion between the progres-

sive [inits] baseline in this paper and the fixed blocking scheme of the same name in

previous work, as described in Chapter 5, which in turn corresponds to the [alli] base-

line. Clustering F1 is congruent with blocking F1 as long as blocking F1 increases and

then continues to grow while blocking F1 starts to deteriorate due to a loss of preci-

sion. Depending on the clustering method, clustering F1 will continue to grow until

everything is compared, or starts to deteriorate slowly at some point (see Figure 11a).

Apparently, a within-block clustering using additional features can help absorbing some

loss of blocking precision while preserving continued gains in recall.







Chapter 7

Hierarchy Extraction: Towards

Hierarchical Affiliation Resolution

In this chapter, we study the use of the subset partial order of entity representations

not only for illustrating name matching or deriving progressive blocking schemes, but

for describing hierarchical relationships in the real world. By putting constraints on

which representations can be merged, we are able to extract institutional hierarchies

from large amounts of affiliation strings. We define a modular framework in which

components can be exchanged as long as they perform the required task on the respective

input. We give one example implementation for each component to obtain a proof-of-

concept. Most of the work on this topic was made in the context of a project that

was proposed to the KB-Infrastructure Group and had been granted three-month of

funding. The focus was on the application of previous work around the subset partial

order of blocking representations on institutions as a new type of entities to disambiguate

international affiliations. Hierarchical aspects derive naturally from the subset partial

order and had already been reported to be relevant by other groups because some

affiliations can belong to multiple top-level institutions. The mechanisms by which

the partial order interacts with the concept of institutional hierarchies mostly worked as

expected in the proposal. However, a number of additional insights regarding concrete

sub-tasks, their requirements and potential solutions were identified during the course

of the project and when writing up the results. Ultimately, the new task of hierarchical

institution resolution could not be solved completely in the first approach, but the

structuring elements of the task as discovered by us can be considered to constitute the

main contribution of this work. In addition, a number of sub-tasks could already be

solved to a satisfactory degree and a comprehensive error analysis as well as a concrete

plan for next steps outlined how future work can address the remaining sub-tasks were

our initial baselines had not been able to achieve sufficient results yet.
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7.1 Overview

In addition to author names, scientific publications are usually attached affiliation

strings. There is a great variation in how affiliations are reported, both syntactically in

terms of how an institution is referenced and semantically in terms of which degree of

hierarchical specification of the author’s affiliation is given (e.g. only the university or

maybe the university, department and chair). The semantic variations point to a hid-

den underlying institutional hierarchy, which reveals two potential opportunities for data

mining in the set of affiliations: (a) Inducing a hidden, real-world institutional hierarchy;

(b) ordering the observed affiliations in a hierarchical way. These tasks are obviously

strongly related, but in the first case we might also need to hypothesize unmentioned

intermediate institutional nodes, while these are mostly irrelevant in the second case.

For example given an affiliation with some university and another with the same plus

some department and chair, it is not necessary to hypothesize the department as an in-

dividual entity under the university to know that the second affiliation is hierarchically

ordered under the first. The approach proposed in our work is based on a pipeline frame-

work going from creating affiliation representations over separating individual top-level

institutions, hypothesizing intermediate nodes and ordering affiliations hierarchically to

merging equivalent nodes adjacent in the hierarchy. The latter task essentially deals

with the distinction of syntactic and semantic differences, where syntactically different

but semantically equivalent affiliation representations are to be merged. In the paper, we

first describe the logic behind this framework and then proceed to present first baselines

for each of the framework’s components. An additional challenge lies in the evaluation

of hierarchical affiliation resolution and its sub-tasks. Our work is based on affiliation

strings from the Web of Science. For top-level and hierarchical evaluation, we deploy an

existing WoS-based top-level gold standard and enrich an existing gold hierarchy with

WoS affiliations. Results are mixed in that some tasks work very well, while others, in

particular those further downstream in the pipeline (e.g. deciding for adjacent nodes

whether they are equivalent) are found to be challenging. Nevertheless, for all tasks a

credible path to success could be laid out, although it might often require to dedicate

a full project’s worth of effort to a single sub-tasks, e.g. to learn a (rule-based) binary

equivalence classifier over affiliation representations adjacent in the induced hierarchy.
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7.2 Terminology and Notation

In this work, we have mostly refrained from using mathematical notation. Therefore,

we list instead a number of terms that are introduced in the paper to describe specific

concepts and are not necessarily commonly used in this way.

representation set of attribute-value pairs representing an affiliation, corresponds to

a node in the inferred institutional hierarchy

affiliation the mention of an institution of any hierarchical level on a document

institution a real world institution of any hierarchical level

top-level institution a real world institution such that that has no higher-level insti-

tution

top-level resolution assigning affiliations to the top-level institution(s) that their ref-

erenced institution belongs to

hierarchical resolution assigning affiliations to the specific institution in the hierar-

chy that they refer to

representation task the task of creating meaning and useful representations from

affiliation strings

interpolation task the task of deriving unobserved intermediate institutions in the

hierarchy from observed representations

collocation task the task of ordering observed affiliation representations hierarchically

conflation task the task of determining whether representations adjacent in the in-

ferred graph are equivalent and then merging them

separation task the task of identifying top-level institutions in the data and separating

all affiliations that belong to different top-level institutions for efficiency reasons

label also attribute, one of a predefined set of institutional functions like university, is

paired with some observed phrase of the affiliation string

term also value, the normalization of a term in a labelled phrase of the affiliation string,

forms a feature pair with this label

part phrase or substring of the affiliation string determined to describe one particular

institutional function, then to be labelled and split into terms to derive attribute-

value pairs

minimal element representation that no subset exists of in the set of affiliation rep-

resentations, assumed to reference a (potential) top-level institution
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7.4 Discussion

7.4.1 Erratum

There is a formatting problem that happened during the publication process: Under

Section 5.2, the first enumeration goes from 1–4, followed by one sentence “These aspects

are assessed by objective evaluation:” and another enumeration that goes from 5–8. In

the formatting, the intersecting sentence was incorrectly but understandingly assigned

to point 4 of the first enumeration.

7.4.2 Shortcomings and Potential Improvements

As there are no other existing works to compare our approach against, the main questions

to be discussed in the context of this work are interpreting the methods and their results

as to how satisfactory they are as well as viewing them in the light of what can be

expected in general, given the discrepancy between the data and the hypothetical target

outcome. We have dissected the problem into a number of sub-tasks such that their

solutions are necessary and sufficient conditions to reach the target. How well each task

could be solved by our first baselines has been discussed in detail in the paper. The

problematic tasks concern the discovery of real institutions (top- or lower-level) in the

collection of affiliation strings. The tasks that link affiliations to discovered institutions

achieve much better results as of now. In addition to the sub-tasks T1-T5 that make up

the overall task, we have presented five components that make up the overall solution

(in our framework). As for the sub-tasks, we have analyzed how well each of these

components works at this point and how it may be improved in future work:

Representation This step is not trivial but probably not impossible either, it just

requires a lot of further focused effort that would optimally culminate in a proper

affiliation parser outputting a standardized representation with all hierarchical

levels properly separated and labelled. Due to the unreliability of the keywords

used in the data (e.g. department) this parser can only work when trained over

the entire corpus and learning in one way or another which terms in which context

refer to which real-world hierarchy level.

Separation The success of this step depends a lot on the quality of the representations.

It is rendered much easier if we know the top-level institutions, which is actually

not an unrealistic assumption, given that there are a number of large databases

of international higher education institutions (e.g. the World Higher Education
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Database1), although these will miss smaller institutions like companies or other

non-teaching institutes that also produce scientific output.

Interpolation This step could be improved further, which mostly depends on knowing

the real labels in the representation to remove labelled components in the correct

order. However this step is also not really required except if one aims at inducing

the true hidden institutional hierarchy to the greatest details possible.

Collocation This is the central aspect of our approach. There is nothing to be changed

or improved as it is simply partial order production using the subset relation of

affiliation representations.

Conflation This is currently the most lacking component. It requires a binary equiv-

alence classifier for representations adjacent in the collocation result, which again

depends mostly on the quality of the labelling of institutional functions in the

representations.

All in all, it is clear that most gains are to be expected from better affiliation represen-

tations, so this would be the most urgent component to improve. Still, our experiments

have shown that it is a major uncertainty whether it is possible to guess all the hier-

archical relationships that are objectively not even indicated in the affiliation strings –

that is if the data is sufficient to induce the majority of relationships. In addition, a

peculiarity that has not been addressed yet is that the true institutional hierarchies are

actually changing over time, which means that changes needed to be tracked in the his-

torical data that ranges from 1980 to 2020 in order to show the relationships only for a

specified point in time. In conclusion, hierarchical institution resolution is an extremely

challenging task if the goal is to achieve close to perfect results. Currently, only in some

cases indications of hierarchical relationships can be extracted. A certain potential for

improvement is graspable with predictable next steps. The question whether the task

can be solved to a sufficient degree is open. This raises the question of the usefulness of

out work. In addition to the hierarchies that have already been discovered, one advan-

tage of our work lies in the visualizations that contribute to the problem solving process

as they allow to both browse the data and inspect the outcomes of applied methods.

Another merit of our proposed approach and method is that it can be considered a mile-

stone on the way to the solution. Despite remaining problems, the state of the solution

achieved so far is not an impasse, but can be improved further as is – and it has been

discussed in great detail how that would have to be done.

1https://www.whed.net/home.php, retrieved June 25th 2021

https://www.whed.net/home.php
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7.4.3 Evaluation

Evaluation in this work was challenging. Top-level resolution could be easily evalu-

ated using the silver-standard created at Bielefeld University which allows to put the

affiliation string and the assigned top-level institution side-by-side. However this was re-

stricted to German Institutions. We have not evaluated international institutions except

that the prototype was run on the entire WoS as a proof of concept and some inspection

of the output was done. The top-level silver-standard inherently contains two pieces of

information: (a) the correct grouping of affiliation strings (point 5: top-level resolution)

and (b) the correct assignment of affiliation strings (point 6: top-level linking). In the

first case, we know for each pair of affiliation strings whether they should be assigned to

the same top-level institution. In the second case, we know for each institution, which

affiliation strings should be assigned to it. The first allows the usual pairwise cluster-

ing evaluation over the entire dataset. The second allows to pick a certain top-level

institution and use a basic descriptive representation thereof (e.g. UNI:{Heidelberg})

to see which affiliation string representations are supersets thereof. False positives then

are those supersets that are not annotated with the current top-level institution. False

negatives are those annotated by the latter, but not returned by the superset query.

Hierarchical resolution suffered from the non-existence of a hierarchical gold standard.

Here, we would need affiliation strings correctly assigned to nodes in correct institutional

hierarchies. Fortunately, we have identified the GERiT database as a correct institu-

tional hierarchy for German institutions. Unfortunately, this does not assign actual

“dirty” affiliation strings to these hierarchically ordered lower-level institutions. There-

fore, we have manually assigned real affiliation strings from the Web of Science to the

nodes of this correct hierarchy for universities Bonn, Trier and Heidelberg, which has

provided us with a small hierarchical gold standard. Similar to top-level annotation,

this allows two types of evaluation: (a) the correct grouping of affiliation strings (point

7: lower-level resolution) and (b) the correct hierarchical ordering of affiliation strings

(point 8: hierarchical resolution). In the first case, we know for each pair of manually

assigned affiliation strings whether they should be assigned to the same lower-level insti-

tution. In the second case, we know for each pair of manually assigned affiliation strings

in which hierarchical relation they stand. We decide to interpret “hierarchical relation”

between two affiliation strings a, b as being above or below (a < b), equal (a = b) or

unrelated. Of course, this does not reflect for example how many levels a should be

below b, but if the entire hierarchy is correct and all pairs of affiliation strings are in

the correct relationship, then a must also be in the right level under b, or there will be

mistakes with other pairs. This means that we have two gold relations < and =, as

well as their union ≤, which contains all the pairs of affiliation strings that should be
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in the respective relation. Then we can compare all pairs of our system’s hierarchical

output to those gold-standard pairs just as with the equivalence relation evaluated in

a clustering setup. False positives are pairs that our system returns under < or = but

that are not ordered like this in the gold standard. False negatives are pairs ordered like

< or = in the gold standard, for which our system returns no relation – or the wrong.

In the following, we briefly summarize the results of the above described evaluation:

1. Point 5: top-level resolution. This amounts to the separation step by which

connected components in the subset partial order are identified. Alternatively,

minimal elements can be used to define overlapping blocks of affiliations. There

are two major problems that lead to oversize institution blocks with many false-

positives: (a) overly general representations like CLIN: {Univ} – these collect to

many supersets under them – and (b) lower-level institutions that actually belong

to multiple top-level institutions – these lead to oversize connected components

even if correctly represented. While the second problem is not relevant when

minimal elements are used instead of connected components, the first still applies.

We have evaluated by minimal elements, while in the work described in Chapter

8, we have used connected components. Top-level resolution still suffers from a

challenging detection of overly general representations and therefore only gives

23% precision at 63% recall.

2. Point 6: top-level linking. For the tested three institutions and the corre-

sponding representations UNI:{Trier}, UNI:{Bonn} and UNI:{Heidelberg}, top-

level linking works well. This means that most affiliation strings which the top-level

gold standard by Bielefeld University assigns to these institutions are actually rep-

resented by our method as supersets of the respective representations above. For

Trier, 1% of true affiliations are missed, 11% for Bonn and 19% for Heidelberg.

For Trier, 5% of supersets are not actually referring to Trier University, 1% for

Bonn and 3% for Heidelberg.

3. Point 7: lower-level resolution. Here, we measure the overlap between the

equivalence of lower-level affiliations (=) both in the hierarchical gold-standard

and in the hierarchical output of our system. Precision is always 100%, meaning

that no two affiliation strings with the same representation should actually be in

a hierarchical relation. In other words, our representation module is not dropping

information significant for establishing a hierarchical relationship between the an-

notated affiliations. For Trier, 3% of all pairs that should be identical have a

non-identical representation and are therefore missed, likewise 18% for Bonn and

11% for Heidelberg. As indicated by the ≤ relation, for Trier only 1% of all pairs
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are missed and are not in a hierarchical relationship either, likewise 13% for Bonn

and 11% for Heidelberg.

4. Point 8: hierarchical resolution. Here, results are poor. For Trier, only 3

hierarchical relations have been discovered correctly. Most of the superset rela-

tionships actually refer to equivalent representations. This is similar for Bonn. For

Heidelberg, 30% of the superset relationships refer to actual hierarchical relation-

ships, which corresponds to 4% of all actually annotated hierarchical relationships

found.





Chapter 8

Super-blocking: Partial Order

Components for Blocking Billion

Entities

In this chapter, we study the separation problem, the task of creating super-blocks inside

which progressive resolution is applied. This amounts to finding a relation that com-

bines all equivalent mention pairs but still separates most pairs in the dataset, thereby

limiting the super-block size to an extend that allows building the subset partial order

and progressively merging blocks. In the author disambiguation example, we have pre-

viously considered surname, first initial as fixed super-blocks. In hierarchical institution

resolution, we have considered minimal elements as super-blocks that correspond to top-

level institutions. In this work, the objective is to compute connected components in

the subset partial order of entity representations by relating every representation to its

minimal element and using this condensed representation to compute connected com-

ponents. In the same process, we could build the full subset partial order, although

this will require more space. It is assumed that the full partial order is built only for

one or some individual super-block(s) at a time. The focus of this work is to identify

options for balancing speed and space requirements to enable fast search of connected

components with custom RAM requirements in the subset partial order over roughly

one billion entity representations. A suitable application scenario is finding duplicates

in the CORE repository. On top, we also use this approach to find super-blocks on

authors and institutions in the Web of Science. In particular, we use two functions to

enable effective resolution: (1) The specification function, which identifies and isolates
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overly general representations and (2) the generalization function, which creates hypo-

thetical generalizations for each observed representation to define which is the minimal

information overlap required for equivalence.
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8.1 Overview

In this work, we present as major contributions: (a) a formal abstraction of classification,

clustering and blocking as bipartite graph operations; (b) the matrix-based abstraction

that was already discussed in Chapter 3.7 with some of the blocking methods instan-

tiated therein as examples; (c) a simple parallel algorithm for minimal element search

with configurable space/time tradeoff and (d) a blocking method based on (a) and (c)

that considers connected components in the subset partial order of set-based repre-

sentations as blocks and can also be described by (b). The bipartite graph described

under (a) is computed using the algorithm in (c) by relating any representation to all

minimal element in the sub-/superset partial order that are subsets thereof. The prop-

erties unique to the blocking method (d) are mainly the representation, specification

and generalization steps that were already sketched in the hierarchy extraction work

described in Chapter 7. We have given a proof-of-concept for all four contributions: (a)

the bipartite graph abstraction was proven to be useful by describing in it single-link

clustering, DBSCAN, k-Means, the EM algorithm, as well as any classification model and

any blocking model; (b) the matrix-based abstraction was likewise proven to be useful

by describing in it specifically Standard Blocking, Suffix-Arrays, Sorted Neighborhood,

Attribute Cluster Blocking and iMatch blocking and generally Hash-based, Sort-based,

hybrid, learning-based and schema-agnostic blocking (see Papadakis et al. [1] for this

categorization); (c) the algorithm was proven to find minimal elements in more than

one Billion records within 24h, which could probably be considerably faster with a C++

implementation; (d) the blocking method itself with a number of different configura-

tions was evaluated on large gold-annotated subsets of three large datasets for duplicate

detection, author disambiguation and institution resolution, respectively. For the main

application scenario of duplicate detection, this was also compared against a SimHash

baseline and on a smaller dataset for which results of other baselines have been reported

by Gyawali et al. [96]. Results suggest that our method delivers performance similar

to an infeasible vector-similarity-based method [96] for duplicate detection. For author

disambiguation, it regresses to classic surname, first-initial super-blocking that was also

used in the work described in Chapter 6 and for affiliation resolution, it confirms and

explains the problems already noted in the separation step of the work described in

Chapter 7.
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8.2 Terminology and Notation

In this work, we have mostly refrained from using mathematical notation. Therefore,

we list instead a number of terms that are introduced in the paper to describe specific

concepts and are not necessarily commonly used in this way.

necessary conditions for blocking equivalence here which features need to be present

in either representation to consider connecting two representations, corresponds

to minimum requirements during the specification step

sufficient conditions for blocking equivalence here one representation being a sub-

set of another is sufficient for blocking equivalence; further, the transitive symmet-

ric closure of this relation creates blocks, i.e. sharing at least one minimal element

is sufficient, as well as being in the same connected component in the corresponding

bipartite graph

necessary conditions for clustering equivalence here being in the same block is

necessary for clustering equivalence

sufficient conditions for clustering equivalence being in the same cluster is suffi-

cient for clustering equivalence, however clustering is not studied in this work

super-blocking first coarse blocking that produces blocks small enough for more ad-

vanced blocking algorithms like the on described in Chapter 6 but possibly too

larger for expensive clustering methods

bipartite graph graph whose vertices are in either one of two sets such that no edge

connects two nodes in the same set

point any data sample, node in the bipartite graph

connector node in one of the two parts of the bipartite graph; indirectly connects

points in the other set which have both edges going to this connector

connected component element of the partitioning of a graph’s nodes (and edges)

such that all nodes in the same component are connected to all other nodes in it

by some path and no edges are between nodes in different components

transitive closure of the relation describing the bipartite graph’s edges: corresponds

to connected components

subset partial order the partial order defined by the subset relation; alternatively by

the superset relation, as we here consider its symmetric closure, i.e. an undirected

graph where the direction (subset/superset) does not matter

minimal element Ř here any representation for which there is no subset in the data
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representation step process by which representations are created from the data en-

tries, i.e. sets of features, where the latter are usually attribute-value pairs

specification step process by which all representations that do not meet the minimal

requirements are isolated by adding to them either their representation-ID or their

mention-ID

generalization step process by which we add unobserved representations for any ob-

served representation according to some generalization rule by dropping certain

features from the observed representation; such generalization should correspond

to a minimum required overlap with other potentially coreferring representations

X the set of all mentions, sample, data points

R the set of all representations (or blocking keys) of mentions x ∈ X over some feature

set F

F set of all features

x
k

⊞ the |X|× |R| mention:key matrix, which assigns each mention one or more blocking

keys.

k
k

⊞ the |R| × |R| key:key matrix, which stores the relations between blocking keys.

x
x

⊞ the |X| × |X| mention:mention matrix, which is the target and holds all pairs of

mentions to be verified

Ř+ minimal element that has at least one superset

Rinverted index pointing from features f ∈ F to all representations R(f) ∈ {R ∈ R |

f ∈ R} that include them

patch processed iteratively; corresponds to a vertical slice in a matrix with potential

subsets along the first dimension and potential supersets along the second; larger

patches require more memory and are more time-efficient

batch processed in parallel; corresponds to a horizontal slice within a patch; list of

potential subsets defining an independent search task
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1 INTRODUCTION

Grouping entity mentions according to some de�nition of equiv-
alence is a basic but important task in information processing.
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blocking methods have been proposed in the literature. Although
best practices vary greatly between di�erent tasks such as duplicate
detection and author disambiguation, all approaches aim at identi-
fying entity pairs that share identical or similar blocking keys. Task-
dependent concerns are which and how many keys are created for
an entity mention and the de�nition of blocking-key relationships.
Regarding the latter, current methods either use key equivalence
relations (including identity, e.g. Attribute Cluster Blocking) or total
orders (i.e. alphabetically sorting keys, e.g. Sorted Neighborhood)
[21]. We argue that neither equivalence relations nor total orders
properly model relations between set-based blocking keys and in-
stead propose to arrange them in partial orders. In Backes [3] and
Backes and Dietze [4], it was shown how the subset partial order ex-
presses matching relationships between author names. Total orders
fail to consider logical inclusion, for example, Doe, Jack Herbert is
alphabetically closer to Doe, Jacqueline K. than to Doe, J. Herbert.
It was also shown to be impossible to view name-matching as an
equivalence relation, since the former is not transitive.

Transferring these insights from AD blocking to ER in general,
we de�ne an adaptable framework for blocking entities in di�erent
domains that scales beyond one Billion entity mention representa-
tions by using a novel algorithm for minimal set search to identify
connected components in the subset partial order. In contrast to
existing parallellized solutions [15, 20], our algorithm follows a
convenient job-based approach and allows for con�gurable space-
time tradeo� without inter-process synchronization. Our approach
can work with author names as well as title word n-grams, publi-
cation dates or parsed elements, while allowing the user to de�ne
domain-dependent ad-hoc baselines. Our main contributions are:

(C1)We introduce a theoretically justi�ed blockingmethod based
on connected components in the subset partial order of entity rep-
resentations, which allows us to incorporate the state-of-the-art
in author disambiguation, reproduce and model the di�culties
in a�liation resolution and par performance of the much more
expensive vector-similarity method in (near-)duplicate detection.
Our method also outperforms the fast SimHash method because its
greater tolerance for variation allows it to obtain higher recall.

(C2) We develop a new algorithm for minimal set search that
allows parallelization with customizable time-memory trade-o�
and scales our method to more than one Billion representations.

Next, we review state-of-the-art blocking approaches, successful
partial-order applications to ER and algorithms for minimal element
search in partial orders. In section 3, we conceptualize the previ-
ously described blocking methods in a partial-order-based model of
key-overlaps and on this basis contrast them with the description of
our suggested approach. In section 4, we describe our algorithm for
minimal element search. After assessing and comparing its output
for di�erent con�gurations in section 5, we conclude in section 7.



Tobias Backes and Stefan Dietze

2 RELATEDWORK

2.1 State-of-the-art in Blocking Methods

A recent comprehensive survey by Papadakis et al. [21] has sum-
marized the state-of-the-art in blocking methods. We �nd that
these methods can be described by two fundamental properties:
(1) blocking-key creation and (2) blocking-key relations. Further, a
matrix view can be used to better conceptualize their interaction,
using three sparse matrices (see Figure 1):

(1) G :
⊞, the |- | × |R| mention:key matrix, which assigns each

mention one or more blocking keys.

(2) : :
⊞, the |R | × |R| key:key matrix, which stores the relations

between blocking keys.

(3) G G
⊞, the |- | × |- | mention:mention matrix, which is the

target and holds all pairs of mentions to be veri�ed

The target matrix is computed as the sparse dot-product

G G
⊞ =

G :
⊞ ·:

:
⊞ ·:

G
⊞

where : G
⊞ is simply the transpose of G

:
⊞. For (1) blocking-key cre-

ation, each key constitutes a conjunctions of features that are com-

bined in a disjunction if one mention has multiple keys in G :
⊞ (i.e.

two mentions share at least one key). Regarding (2) key-key rela-

tions, these are encoded in : :
⊞ as either identity, equivalence or total

orders. The survey [21] distinguishes �ve classes of block building
methods, which we describe in the following.

(a) Hash-based blocking focuses on blocking schemes that
extract features (i.e. conjunctions of essential properties or su�-
cient overlaps) to create one or more keys per mention. Key-key

relations are not used, i.e. the identity matrix is used for :
:
⊞. Ex-

amples are Standard Blocking (Figure 1a) and Su�x-Arrays (Figure
1b) as well as locality sensitive hashing (LSH) methods like SimHash

introduced by Charikar [8], evaluated by Henzinger [12] and ap-
plied among others in Manku et al. [18] and Ravichandran and
Vassilvitski [26]. SimHash is an e�cient way of �nding pairs of
hash keys with large overlaps without having to explicitly create
all su�cient overlaps as blocking keys. There are di�erent variants
of this method, depending on feature extraction, the hash-function
and how feature-hashes are combined into a record-hash.

(b) Sort-based blocking uses a total (alphanumerical) order on
the blocking keys to relate keys by �xed-size or adaptive windows

over this sequence. Here, the key-key relation encoded in : :
⊞ is

not transitive and consequently neither is the target relation in G G
⊞,

which thus encodes not a block partitioning, but a set of pairwise
veri�cation tasks. If the above windows are overlapping as in Sorted

Neighborhood Blocking (Figure 1c), the transitive closure cannot be
applied before veri�cation as it would group all keys and mentions
together. One could add delimiters to the alphanumerical order to
create multiple sequences with individual minimal elements.

(c) Hybrid blocking combines the use of multiple keys with

their sorting. The mention-key matrix G :
⊞ can then map more than

one key to each mention (as in Figure 1b), which are in turn mapped

to each other in : :
⊞ based on their alphanumerical closeness (as in

f (keys)

x

•◦◦◦◦◦◦
◦◦•◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦•◦◦◦◦◦
◦◦◦◦•◦◦
◦◦◦•◦◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•
◦•◦◦◦◦◦

·

f

f

•◦◦◦◦◦◦
◦•◦◦◦◦◦
◦◦•◦◦◦◦
◦◦◦•◦◦◦
◦◦◦◦•◦◦
◦◦◦◦◦•◦
◦◦◦◦◦◦•

·

x

f

•◦◦◦◦◦◦◦◦◦
◦◦◦◦•◦◦◦◦•
◦••◦◦◦◦◦◦◦
◦◦◦•◦◦•◦◦◦
◦◦◦◦◦•◦◦◦◦
◦◦◦◦◦◦◦•◦◦
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=

x

x

•◦◦◦◦◦◦◦◦◦
◦••◦◦◦◦◦◦◦
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(a) One key per mention: Standard Blocking
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(b) Multiple keys: Su�x-Arrays
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(c) Total order windows: Sorted Neighborhood
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(d) Key grouping: A�ribute Cluster Blocking

Figure 1: Five di�erent types of blocking methods in the

matrix-based framework — with one example per type.

Figure 1c). As both the use of multiple keys (whereof only one has
to match) as well as their inter-relation eases the requirements for
mentions to be coreferent, it is natural that here keys should be
created according to a relatively speci�c scheme.

(d) Learning-based blocking uses machine-learning to obtain

G :
⊞ and possibly : :

⊞. Assuming : :
⊞ is the identity matrix, the block-

ing method is easily described as a set of DNF formulas with the
conjunctions inside the key de�nitions and their disjunction by

G :
⊞. Such can be learned from a mention to feature mapping by

dedicated DNF-learners that minimize the di�erence between the
output matrix G G

⊞ and a corresponding gold equivalence relation.
(e) Schema-agnostic blocking describes approaches that gen-

eralize or drop the attribute part of the AND-combined attribute-
value pairs to create blocking keys, e.g. using (name-part,Doe) or
Doe instead of (surname,Doe). This allows to process unstructured
data without reliable �eld information but diminishes options for
modelling logical matching relations.1

1Any blocking methods realized by comparing relational database table rows based
on the similarity or identity of values in the same column will struggle to process
data in which multiple features exist for the same (non-)attribute as this prevents a
simple one-to-one mapping between attributes and columns. However, this is mostly
an implementations issue, as the subset or overlap relations between keys can be easily
implemented as set- or bag-relations where blocking keys are considered sets or bags
of the features present in the respective conjunctions.
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2.2 Entity Resolution with Partial Orders

Backes [3] has described how the subset partial order over parsed
name constituentsmodelsmatching relations between author names
using a lattice of author name types. For example John Doe is a
direct speci�cation of J. Doe. Observed author mentions are ordered
according to this lattice, producing semilattices under surname,�rst-
initial that encode name-matching and its consequences for block-
ing. This was further formalized and used for progressive block-
ing in Backes and Dietze [4]. Backes et al. [5] suggest to use the
approach to uncover hierarchical relationships among a�liation
strings. To detect unobserved intermediate hierarchy levels, ob-
served a�liations were generalized by dropping the most speci�c
elements from their representations. To isolate minimal elements
not corresponding to top-level institutions, overly-general repre-
sentations were speci�ed by adding unique identi�ers.

2.3 State-of-the-art in Partial Order Algorithms

Partial order production and extremal sets. A series of works by
Pritchard as well as Yellin (with Jutla) [22–25, 32, 33] regarding both
the computation of the subset/superset partial order and closely re-
lated extremal set search established an$ (# /log# ) runtime bound
together with two heuristics: (a) cardinality ordering of itemsets
and (b) frequency ordering of items with lexicographic ordering
of itemsets.While cardinality-ordering exploits the fact that only
a larger set can be a proper subset, lexicographical ordering rep-
resents itemsets as a sequence of their (frequency-)sorted items
before ordering these sequences lexicographically. Then, a subset
is either a pre�x of the superset, or is guaranteed to follow the
superset in the ordering. Both heuristics can be combined by or-
dering �rst by cardinality and then lexicographically within each
cardinality block. Shen et al. have described two �rst theoretical
parallel algorithms for �nding extremal sets [30] and have further
shown how to update and maintain extremal set information in a
dynamic environment where itemsets are added, removed or mod-
i�ed [29]. In 2011, Bayardo and Panda [6] revisited the problem
of extremal set search by simplifying Pritchard’s algorithm and
de�ning two separate versions for each of the two heuristics. The
question of parallelization remained open except for the recursive
algorithm by Leiserson et al. [15] for the general case of partial
order. In 2014, Fort et al. [10] proposed GPU-based parallelization.
In 2014 and 2016, Marinov et al. [19, 20] added some implementa-
tional improvements over Bayardo and Panda [6], which includes
caching and also parallelization. However, they require inter-thread
communication via shared integer variables, which is a bottleneck
for massive parallelization and indeed reported numbers suggest
that gains from using an additional worker quickly decline.

Set containment joins. One can interpret near-duplicate detection
as set similarity joins, which is often centered around set contain-

ment joins, meaning successive subset or superset queries, the latter
of which is generally faster [31]. It is common practice to implement
superset queries by intersecting multiple sets of potential supersets
containing the elements of the potential subset as returned from an
inverted index. Interestingly, although extremal set search is based
on repeatedly identifying subsets or supersets, it is not linked to set
containment joins in the literature. There are many publications

claiming improvements in time and memory e�ciency for set con-
tainment joins, most of which have yet to stand the test of time. Still,
one should know their underlying principles that are based on prob-
lem fundamentals as their usefulness might be context-dependent
(e.g. by data properties [16]). A recent paper by Yang et al. [31]
distinguishes union-oriented (signature-based blocking with subset
enumeration) and intersection-oriented (inverted-index-based su-
perset search) methods. A popular method for the latter is PRETTI
by Jampani and Pudi [14], which introduces the concept of a pre�x-
tree to avoid redundant inverted index lookup and intersection for
shared pre�xes of potential subsets during superset search. This
underlines how set containment join can o�er e�ciency gains by
doing more than just repeated isolated superset queries. A more
recent method by Luo et al. [17] is an example for a signature-based,
union-oriented set containment approach. Bouros et al. [7] improve
PRETTI by (a) limiting pre�x-tree construction for potential subsets
and (b) progressively building the inverted index for the potential
supersets by sorting both by rarest element. Luo et al. [16] present
a compromise of signature-hashing without subset enumeration
meant to reduce the space cost of intersection-oriented methods
while maintaining their speed-wise superiority. Yang et al. [31] re-
�ne the intersection-oriented approach by tackling the intersection
of the postings lists, iterating over the posting lists’ elements in
parallel, instead of progressively intersecting list by list. There are
many more works on set containment. Savnik et al. [28] give a
recent overview of relevant research domains and how the problem
of set containment is addressed in them. Their own contribution
does not address set containment join in the sense that they only
facilitate individual, not repeated sub-/superset queries.

2.4 Relating our Approach

Our proposed approach is sort-based, but instead of a total order, we

use a partial order that could be encoded in : :
⊞ and may have non-

overlapping constituents that are discovered through connected
component labelling. It can be schema-aware or agnostic, depending
on whether the features in the representations are attribute-value
pairs or just values, respectively. These representations correspond
to blocking keys, whereof we use only one per mention. We build
heavily on prior works described in Section 2.2. In particular the
work on a�liation resolution with its modular components is used
as a blueprint for our presented solution, where we focus on im-
proving means for the separation step. In our experiments, we also
impose this super-blocking on the AD task. In addition, we study
the duplicate detection task, which has not yet been addressed with
partial orders. Our entity representations correspond to itemsets,
which our proposed algorithm orders by cardinality when creating
jobs for parallel superset search. Instead of a frequency-based lexi-
cographical heuristic, we use a shared inverted index for this task.
In contrast to other parallellized approaches discussed in Section
2.3, our solution is not just theoretical (like [30]) requires neither a
GPU (like [10]), nor inter-process communication (like [20]). We
have implemented the recursive parallellization by Leiserson et al.
[15] but found it inconvenient. The inverted index can be improved
by exploiting techniques discussed for set containment joins. The
work by Shen [29] suggests that e�cient maintenance of extremal
sets could turn our approach into a dynamic blocking method.
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Figure 2: Relating blocking keys in the subset partial order of mention representations and minimal overlaps.

3 PRELIMINARIES AND METHOD OVERVIEW

Entity mentions are associated with a number of features like au-
thor names, title terms or publication dates, some of which might
be particularly useful for blocking. In one way or another, all block-
ing methods approximate measures of feature-overlap, i.e. they
assume that mention pairs likely to be coreferent are recognized
by having in common a more signi�cant selection of features than
those that are not. Such feature overlap is generally modelled in
blocking methods as two separate aspects: (1) blocking-key creation
and (2) blocking-key relation. Two mentions are considered likely
coreferent if they share identical or related blocking-keys.

3.1 Blocking-keys and key-relations

A blocking key represents a minimal required commonality be-
tween two mentions, in other words, a su�cient condition for
blocking equivalence and a necessary condition for actual (cluster-
ing/veri�cation) equivalence. It is a conjunction of features, e.g.

(sur,Doe) ∧ (given1, John)

If for the purpose of blocking, a mention is represented using mul-
tiple keys, these form a disjunction, e.g.

((sur,Doe) ∧ (given1, John)) ∨ ((sur,Doe) ∧ (init1, J)) ∧ (init2,H))

A set of blocking keys that represents an entity mention is a logi-
cal formula in disjunctive normal form (DNF ) that speci�es which
features need to be present in another mention’s representation
in order for it to be taken into the same block. The su�cient con-
ditions for blocking equivalence introduced by blocking keys can
be further relaxed by relating keys. Some blocking methods like
Attribute Cluster Blocking [21] use equivalence relations to relate
similar keys in groups. However, in practice it is often di�cult to de-
�ne boundaries such that all keys within a group can be considered
equivalent and any keys from di�erent groups are not. For exam-
ple, it was noted in Backes [3] that the matching relation between
person names used for blocking in author disambiguation is not an
equivalence relation. Other approaches like Sorted Neighborhood
[21] relate blocking keys in a total order by alphabetically sorting
them. However, this assumes that a key is only a string while using
the more versatile above de�nition, a blocking key is actually a set
of features. Sets are not sorted in a total, but in a partial order by the
subset relation. Conveniently, this relation also re�ects matching
relationships [3]: two representations match if they have a common
superset in the set of all legal representations. For example John
Doe and J. Doe match because the former is their common superset.

John H. Doe and J. Herbert Doe match as well, because there is a
common legal superset John Herbert Doe to both.

3.2 Key-connectedness and -equivalence

As their number is potentially in�nite, it is not possible to enumer-
ate all legal common supersets of all representation pairs. However,
prior work in the author disambiguation domain [3, 4] suggests that
matching entity representations are usually also related by sharing
a common subset (cf. Figure 2a). Due to the incompatibility of the
matching and the blocking relation, supersets sharing a common
subset need to be placed in the same block as coreferent mentions
in either speci�cation could also be referenced by their common
generalization. For example, although John Doe and Jack Doe may
be considered contradictory, mentions represented by both may be
coreferent with those represented by J. Doe and therefore cannot
be separated without the risk of separating coreferent mentions
[3]. In this example, each author mention is represented by one
key (a conjunction of labelled name constituents) and keys are re-
lated in the subset partial order which constitutes a skeleton for
the equivalence relation induced by its symmetric closure, or the
connected components of the corresponding directed acyclic graph.
Even more, the covering relation (see Backes and Dietze [4]) cor-
responding to the transitive reduction of the subset partial order
su�ces to describe this key-relation. Further, a bipartite graph in
which each representation is only related to those of its subsets that
are alsominimal sets, is su�cient to maintain the same connectivity.
A minimal set in the subset partial order is any set without a super-
set. Finally, it should be noted that it is cheaper to label each key
by the graph component it is in than to compute the (symmetric)
transitive closure of the underlying relation (i.e. the set of all pairs
in a connected component). While the worst case complexity of
the latter cannot be lower than the quadratic size of the output
and is more exactly bound by the best known algorithm for matrix
multiplication [1], the former is easily obtained in linear time [13].

3.3 Blocking-keys as minimum overlaps and
mention-connectedness by key-sharing

In the duplicate detection domain, it can be more convenient to
think about su�cient- or minimum overlaps than about matching
relationships. We say it is su�cient for two mentions G1, G2 to be
in the same block if they share an identical or related key. This
means that each key corresponds to a su�cient overlap of features
5 ∈ � . If we have for example a mention G associated with 8 features
51, . . . , 58 and we de�ne a su�cient overlap as any subset thereof
with at least 6 out of 8 features, then there are

(8
6

)

su�cient overlaps
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Figure 3: Mentions with features {0, 11} and {111, 22} are con-

nected via their keys 11 and 111, respectively, which are in

turn related by key windows {1,11, 111} and {11, 111, 2}.

for this mention, for example {51, 53, . . . 58} and {51, . . . 56, 58}. In
the popular SimHash method, all mentions are assigned one �xed-
length hash, e.g. a length-64 bitstring, where each bit corresponds
to one feature 5 that is either present or not. Here, there are only
|� | = 128 di�erent features, i.e. each of the 64 positions/attributes
with a value of either 0 or 1. If we de�ne a maximum di�erence
of 7 bits, i.e. a minimum overlap of 57 bits for two mentions to
be coreferent, this corresponds to

(64
57

)

≈ 621" su�cient overlaps,
i.e. blocking keys. The advantage of the algorithmic part of the
SimHash concept is that it needs not create these hypothetical
overlaps in order to �nd the keys that are su�ciently similar.

If we understand the blocking keys of a mention as subsets of
its features, we can also use all of a mention’s features as a key and
consider it the mention’s representation. Then, the subset partial
order will relate representations of any two mentions that share
a blocking key, i.e. some su�cient subset of features. In a sim-
ple blocking-scheme, we can create all subsets with a certain size
as keys (see Figure 2b), but we may also deploy more advanced
schemes that can decide for each individual representation which
features to remove in order to obtainminimum overlaps. In the same
way, known equivalences between keys can be added as the union
of their feature sets. Figure 3 shows how a concept of sorted neigh-
borhood can be realized in this context. This also corresponds to
the fact that we can merge representations of equivalent mentions
(c.f. Backes and Dietze [4]) and to the above mentioned matching
relationship expressed by common legal supersets.

3.4 Method Overview and Rationale

In the subset partial order, two entity representations / blocking
keys are related by sharing a common sub- or superset (including
the case that one is a subset of the other). Subsets either correspond
to su�cient overlaps, or are overly general representations. Su�-
cient overlaps can be generated by feature removal from observed
representations. Overly general representations can be isolated by
adding unique features to them. Therefore, our proposed method
uses the following preprocessing steps: (A) Speci�cation: Identify
representations that are too general to be considered their own
blocking keys because that would connect too many (unrelated)
representations as supersets thereof. Specify these by adding a
unique identi�er to isolate them; (B) Generalization: De�ne a men-
tions minimum overlaps as subsets of its representation. When we
have created the required representations, we have to produce their
partial ordering and then consider any mentions to be in the same
block if their representations are connected in the corresponding

specified and generalized:

John H. Doe

John H. Doe

Jack Herbert Doe

Jack Herbert Doe

Jack W. Doe

Jack W. Doe

J. W. Doe

J. W. Doe

Doe

Doe, rep123

observed:

John DoeJohn H. DoeJ. H. DoeJack Doe Jack Herbert DoeJack W. DoeJ. W. DoeDoe, rep123

specified:

Jack Herbert Doe

J. H. DoeJack Doe

John H. Doe

John Doe

Jack W. Doe

J. W. DoeDoe, rep123minimum elements:

Figure 4: Example data being preprocessed and linked.

graph. For e�ciency reasons, we do not build the partial order itself,
but instead compute a smaller bipartite graphwith the same connec-
tivity by relating all keys to their minimal elements and ignoring all
keys with neither sub- nor supersets. Then we use simple connected
component search to label all representations with a component
label and add the unrelated keys as singleton blocks. As a result of
generalization, the size of the collection can grow largely during
preprocessing, depending on the number of added generalizations.
For example, if we decide to ignore one of a representation’s 10
features (e.g. to account for one potential misspelling), there are
(10
1

)

= 10 generalizations – and
(10
2

)

= 45 for two dropped features.
If this applies to many data points and the resulting generalizations
are not already part of the collection or previously added points,
then the data can easily grow many-fold. Although this appears as
a disadvantage, the following counter-points should be considered:
(i) smarter generalization schemes should be able to reduce the
number of generalizations; (ii) the collection growing faster than
the number of distinct features increases the chance that a hypoth-
esized generalization is already there (whether from the original
data or previous generalizations); (iii) the growth in the collection
during preprocessing corresponds to a growth in the complexity of
the blocking scheme and the presupposition of explicit overlaps is
the only way to avoid pairwise comparisons; (iv) if our blocking
scheme leads to unreasonable assumptions about the number of
possible overlaps, then we observe this already during preprocess-
ing and can react; (v) since our algorithm iteratively loads batches
of con�gurable size from disk, the larger size of the collection does
not a�ect memory requirements.

4 PARALLEL MINIMAL ELEMENT SEARCH
WITH SPACE/TIME TRADEOFF

In this section, we describe our algorithm for minimal element
search in the subset partial order. There are a few parallel algo-
rithms related to partial order production, but we were looking
for a pragmatic implementation, which none of them provided.
Shen and Evans [30] is only theoretical, Leiserson et al. [15] uses
recursive parallellization, Fort et al. [10] is developed for GPU and
Marinov et al. [20] requires inter-process communication. Instead,
we developed a parallelization framework based on batches that
are retrieved from a job queue and independently processed by
workers. In order to explain our algorithm, �rst a number of basic
principles shall be explained: Minimal elements '̌ in the subset par-
tial order (i.e. minimal sets) are all sets that are not proper subsets:
'̌ ∈ {' ∈ R|¬∃'′ : '′ ⊃ '}. This means that they are either proper
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subsets or neither sub- nor supersets. In fact, we are only interested
in those minimal sets '̌+ that have at least one superset. These we
can obtain by searching all supersets and removing from them all
subsets: '̌+ = {' ∈ R|∃'′ : ' ⊃ '′} \ {' ∈ R|∃'′ : ' ⊂ '′}.
It means that – in contrast to searching just all supersets – we
cannot stop when we have found one subset of a set, but we need
to �nd all of them. In general, we assume that it is easier to �nd all
supersets for a given set than the other way round, because one
can deploy an inverted index Rpointing from features 5 ∈ F to
all representations R(5 ) ∈ {' ∈ R | 5 ∈ '} that include them and
then simply compute the intersection of the representation-IDs
returned for all features in a potential subset to obtain the super-
sets: {'′ ∈ R|'′ ⊃ '} =

⋂

5 ∈' R(5 ). This is equivalent to Boolean
retrieval with only conjunctions as queries. Finding subsets should
be considerably harder because we do not know which features
to omit to obtain the subsets. Known shortcuts have been used to
avoid unnecessary computations: (a) features 5 in a representation
' are sorted by their frequency #(5 ) in the collection, because when
we start the intersection with the rarest features, we narrow down
the set of candidate representations faster (for example a represen-
tation with the rarest feature occurring only once in the collection
allows us to break immediately, as it cannot have any supersets
other than itself); (b) representations ' are sorted by cardinality |' |,
because a proper superset is always larger than its proper subsets;
(c) the representations R(f) containing a certain feature 5 are sorted
by an integer index, so that during the intersection, we know when
we have reached a larger integer than the one we are looking for,
we can stop.

Thus, in our approach, the central part of searching minimum
elements is �nding all supersets of a given set. To ensure sub-
quadratic complexity, the set of all supersets for a given set should
be retrieved in less than linear time, as we have to repeat this for
almost every element in the collection. For this, there are a number
of methods from Boolean retrieval and related areas. We assume
that {'′ ∈ R|'′ ⊃ '} =

⋂

5 ∈' R(5 ) is computed e�ciently and
focus on how to exploit further the properties of the task to al-
low convenient parallelization. Here further improvements can be
realized using the techniques discussed for set containment joins
in Section 2.3. In our parallelization framework, we introduce the
concept of patches and batches. Patches are processed iteratively.
For each patch, the data is loaded from disk and intermediate re-
sults are aggregated. Patch size determines the memory footprint

Table 1: Using = parallel processes and< sequential rounds.

2 3 4 5 6 7 ... <
+1

1
. . . . . . . .

⇐
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=
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. . . . . . . .. . . . . . . .
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2
. . . . . . .

shared by processes. . . . . . .. . . . . . .. . . . . . .
3

. . . . . .
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4
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. . .
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. .
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<
.

from smaller index...
=⇒< iterations =⇒

and inverted index e�ciency. Larger patches require more mem-
ory and are more time-e�cient. Each patch is further divided into
batches, which are simultaneously and independently processed
by any number of workers. Table 1 shows how it works: Imag-
ine a matrix with potential subsets along the �rst dimension and
potential supersets along the second. Representations along both
dimensions are sorted by set cardinality. All sets of the smallest
observed cardinality cannot be supersets and all sets of the largest
cardinality cannot be subsets. Patches correspond to vertical slices,
that include the borders between di�erent cardinalities (between
these borders, more patches can be cut). Batches correspond to hor-
izontal slices within each patch. Batches are stored in a queue that
is accessed by parallel workers. In the example, in the �rst patch,
we are looking for size-2 supersets, which amounts to building an
inverted index for these representations and sending subset queries
for all size-1 potential subsets. Batches are lists of potential subsets,
which are independent search tasks since no equal size sets can be
proper subsets of each other. As the ’tiles’ of search space de�ned
by patches and batches are not overlapping, all tasks can be viewed
independently. Patches and batches need not be more than ranges
of representation index integers and the features may be loaded
from disk as late as possible to save memory. A major assumption
of this model is that the parallel workers all read-access the same
inverted index without it being copied in the RAM. If the next index
is built while using the current one, then two indices will have
to be stored in memory at the same time. We do not assume that
the inverted index can be written in parallel, so index creation can
be a bottleneck if next index creation takes longer than current
index usage. In practice, this is usually not the case. Our algorithm

Algorithm 1: Parallel minel– and superset search

Data: potential subsets . and potential supersets -
Result: mapping 5 :<8=4;B × BD?4AB4CB of minimum

elements<8=4;B ⊂ . to their BD?4AB4CB ⊂ -

1 5 , BD?4AB4CB ≔ {} → {} , {};

2 8=34G ≔ make_index(B8I4B1,- );

3 forall : ∈ 1 . . . |B8I4B | do
4 10C2ℎ4B ≔ make_batches(B8I4B:−1,. );

5 forallF>A:4A ∈ F>A:4AB do

6 F>A:4A .start(10C2ℎ4B , 8=34G);

7 end

8 8=34G ′ ≔

{

make_index(B8I4B:+1,- ) if : + 1 < |B8I4B |

NULL otherwise

9 BD1B4CB ′×BD?4AB4CB ′ ≔
⋃

F>A:4A ∈F>A:4AB F>A:4A .join();

10 BD?4AB4CB ≔ BD?4AB4CB ∪ BD?4AB4CB ′;

11 <8=4;B ′ ≔ BD1B4CB ′ − BD?4AB4CB ;

12 forall BD1, BD?4AB ∈ BD1B4CB ′ × BD?4AB4CB ′ do

13 if BD1 ∈<8=4;B ′ then

14 5 [BD1] = 5 [BD1] ∪ BD?4AB ;

15 end

16 end

17 8=34G ≔ 8=34G ′;

18 end
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Figure 5: Our algorithm for minimal element search in the subset partial order: (1) make patches from data; (2) draw �rst patch

to (3) initialize index from potential supersets and set potential subsets; (4) draw next patch; (5) make batches from potential

subsets; (6) replace current potential subsets by next ones; (7) build the next index and at the same time run a number of parallel

workers that process batches using the index; (8) replace current by next index; (9) add current supersets to overall supersets;

(10) get current minels by subtracting from overall supersets the current (new) subsets; (11) update the minel-to-superset

mapping by adding the links from current minels to their new subsets; end if done or repeat with next patch.

is visualized in Figure 5 and given as pseudocode in Algorithm 1.
In each patch, new supersets among the current patch’s potential
supersets are found for all possible subsets as de�ned in the batches
– and aggregated along with their subsets. When a set is determined
subset of a size-: superset, it could be a minimal element, if it is not
a superset. Hence we obtain the new minimum elements respective
our knowledge of supersets up to this patch by subtracting the
overall supersets from the new subsets found during this patch.
Since the cardinality of the potential supersets is increasing over
the iterations, any subset that was not determined a superset in
previous iterations, is known to be minimal. Therefore, the new
minimum elements need only be added to the �nal minel mapping,
although later, more discovered supersets for already found mini-
mal elements might be added. The steps taken by this algorithm are
the same ones required to build the full subset partial order, because
every subset-superset tuple is discovered at some point. However,
we save memory and by only storing the relations between minimal
elements and their proper supersets. As stated earlier, this yields
the bipartite graph that has the same connectivity as the full partial
order. Representations that are neither proper sub- not supersets
are ignored. They are added later for evaluation.

5 EXPERIMENTAL SETUP

In order to assess our framework on real-world data and tasks, We
compare method variants and baselines for duplicate detection of
publications, authors and institutions on large-scale datasets.

5.1 Datasets

For publication records, we use the CORE data dump from 20202

with 119M publication records [big] using all DOI annotations
and removing those that doi.org cannot resolve as well as those
that crossref.org does not label either ‘book-chapter’, ‘disseration’,
‘monograph’, ‘journal-article’, ‘proceedings-article’ or ‘report’. This
removes among others DOIs that refer to complete journals. 24M
DOI-annotated records remain along with the unannotated records.

2https://core.ac.uk/services/dataset

Further, we use the small [core] gold dataset described in Gyawali
et al. [11] for direct comparison.3 For author mentions, we use the
Web of Science from 1980 to mid 2012, with 171" author mentions
and 17.5" distinct names [auth]. 7" mentions are annotated with
researcherID’s (rID). This is the same dataset as used in Backes [2],
Backes [3] and Backes and Dietze [4]. For a�liation strings, we
deploy a subset of a newer version of the Web of Science in which
top-level institutions were assigned to all German a�liation strings
by Rimmert et al. [27] and Donner et al. [9], thus resolving 6.5"
a�liations to 2 top-level institutions [bfd]. This dataset was used
in Backes et al. [5]. To summarize, the following datasets are used:

• [big] Cleaned DOIs from core.ac.uk for publication records
• [core] Original deduplication dataset from core.ac.uk

• [auth] WoS author mentions annotated by researcher-IDs
• [bfd] WoS a�liation strings disambiguated by [9]

5.2 Baselines

We compare di�erent con�gurations of our method against two
baselines: (a) Use only the publication title to determine equivalence,
as in Gyawali et al. [11]; (b) use SimHash [8]. SimHash is not a
speci�c method, but a wide range of functions depending on (i)
feature extraction (we use words and character ngrams of title and
author names); (ii) feature weighting (we use uniform); feature
hashing (FNV1a), feature hash aggregation (average) and : in :-
bits divergence threshold (we use : = 7 out of 8). To summarize,
the following baselines are used:

• exact Use only the publication title
• SimHash Max-7 divergence in averages over uniformly

weighted FNV1a hashes of title features
• base Separate by representations

5.3 Evaluation Measures

We deploy two di�erent evaluation measures. In addition to the
more complicated and expensive evaluation metric used in Gyawali

3Not all record ID’s used in [core] could be found in [big] and not all DOIs can be
resolved or they describe non-individual publication items.
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et al. [11] on the [core] dataset, for [big], we compute precision
and recall of �nding duplicate pairs among all possible pairs. We
count as ) all true pairs, that is all pairs for which it is known
that they are duplicate. We count as % all positive pairs (that are
annotated in whichever way), i.e. the respective method under
evaluation considers them duplicate. We count as )% the set of all
pairs that are both annotated as duplicate and determined to be so
by the evaluated method. Then we compute precision as )%

% and

recall as )%
) . Given duplicate blocks � ∈ B returned by the method

and gold blocks � ∈ G given in the annotation, % =

∑

�∈B |� |2,
) =

∑

� ∈G |� |2 and )% =

∑

�,� ∈B×G |� ∩� |2.

5.4 Experiments with Publication Records

Section 3.4 describes the steps (1) representation, (2) speci�ca-
tion and (3) generalization. For representation, we experiment
with straight-forward options of feature extraction to cover a con-
ventional range of entity descriptions with reasonable granular-
ities. We extract the usual author name components (surname,
surname+initial and surname+�rstname) for the �rst four authors,
publication year ±1 (e.g. 19992000, 20002001 for the year 2000 to
allow for feature overlap with the previous or consecutive year) and
either (1a) �rst six title words4, (1b) �rst six title word-bigrams5

or (1c) �rst six title character-5grams. (1a) and (1b) are used with
our method, while (1c) is used with SimHash as it is usually ap-
plied on such shingles. In addition, we use the exact-title baseline
from Gyawali et al. [11] to check for unwanted divergence in the
dataset or evaluation measure. During speci�cation, we require
as an absolute minimal representation one surname and one title
term and either another surname, another term or the author’s �rst
initial. For representations that do not meet these requirements,
we distinguish two basic strategies that can be easily applied to
deal with overly general representations: (2A) isolate them into one
big block or (2B) isolate them into individual mentions (singleton
blocks). For generalization, we deploy Integer Linear Programming

as a simple method to derive complete generalization schemes from
feature-type-weightings and the following default transformation:

surnames sur+initial sur+�rstname terms years
4 → 4 4 → 4 4 → 0 6 → 4 2 → 1

This produces all subsets with the respective number of features as
well as similarly general transformations with proportional feature-
drops for smaller representations. The weightings for surname,
sur+initial, terms and years are (3a) 8-2-8-1, (3b) 6-2-4-1, (3c) 4-2-6-
1 and roughly indicate how much it ‘costs’ to drop a feature of the
respective type. (3d) is not to generalize at all. To simulate a realistic
scenario and scale, we always disambiguate the entire [big] dataset
and evaluate using the annotated mentions6. Despite our e�orts
to consolidate the DOI-annotation, a number of suspiciously large
annotated duplicate sets exist in [big]. To evaluate our method on a
possibly more realistic de�nition of duplicates, we compute results
while ignoring mentions annotated with DOIs that are observed
more often than a threshold C6 between 10 and no-limit. Also, similar
to Ravichandran and Vassilvitski [26], we notice a cases where our

4Here we use a simple method to ignore stopwords and obtain base-forms.
5As above; no bigrams across stopwords or punctuation.
6This is di�erent from disambiguating only the annotated mentions because two
annotated mentions might only be connected via an unannotated one.

method suggests unreasonably large blocks and therefore allow it to
split all blocks with a size over a threshold C< of 10: for : ∈ {1 . . . 6}
into individual representations. While C6 refers to evaluation modes,
the C< establishes di�erent method variants.

5.5 Experiments with Author Mentions

We represent author mentions either by (1a) conventional labelled
name parts (surname, 1st-initial, 1st-name, 2nd-init, 2nd-name, 3rd-
init, 3rd-name) as in [3, 4] or by (1b) these unlabelled as a schema-
agnostic representation or (1c) character-5grams of the full name.
We use (1a) with our method (requiring at least the traditional
minimum of surname and 1st-initial during speci�cation) and (1b)
or (1c) with SimHash (requiring at least four parts or ngrams). We
have also experimented with di�erent generalization schemes, but
found that the respective results exhibit no relevant di�erences.

5.6 Experiments with A�liation Strings

We represent a�liation strings by (1a) labelled parts (as in Backes
et al. [5]), (1b) unlabelled parts as a schema-agnostic representation
or (1c) character-5grams. We use (1a) and (1b) in our method as
well as (1b) and (1c) with SimHash. During speci�cation, we require
as absolute minimum at least one top-level �eld, one part or four
ngrams, respectively. Alternatively, we try a method that selects
small representations (|' | ≤ 2) for speci�cation by applying a
threshold (C = 1) on how many times a representation is observed
relative to how many speci�cations it has. We do not generalize as
we expect that the data holds at least one a�liation string for each
top-level institution (such as “Univ Heidelberg”).

6 RESULTS

6.1 Results for Publication Records

Out of the 119M mentions, we generate (1a) 88M distinct represen-
tations using title words, (1b) 89M using title word-bigrams and (1c)
86M with character-ngrams. For word bigrams, the most frequent
representation is observed 411K times and contains no feature at all.
The next frequent (241K) has only a publication year of 2014. The
tenth one (9.7K) contains the word-bigram “legislative document”
and the year 1985. All of these are not only observed many times,
but are also obvious cases for speci�cation. After identifying such
overly general representations, the most frequent unspeci�ed one
is observed 8K times and has the features (init, hofmann_j), (�rst,
hofmann_jutta), (surname, hofmann), (bigram, tree ring), (bigram,

ring width), (bigram, picea aby), (bigram, aby kirsten), (bigram, his-

torical object), (bigram, object sample), (year, 20062007) and (year,

20072008). Di�erent generalization schemes create a multitude of
additional subsets for these observed representations. For bigrams,
the numbers increase to (3a) 1.1B, (3b) 494M and (3c) 938M, giving
us the chance to test our blocking method on very large data. This
constant factor implemented as a concrete 5–10-fold increases the
likelihood of common subsets that connect similar representations
without pairwise comparison. Without generalizations, building
the bipartite graph over these (bigram) representations as described
in Section 3.4 and detecting its connected components takes about
(3d) 1:45h on 8 cores. Likewise, (3a) 21h, (3b) 10h and (3c) 20h.
We expect that translating our Python prototype into C++ could
increase its speed by an order of magnitude.
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𝘁𝗲𝗿𝗺: + include, manual,
pharmacopeia, preparation

𝘁𝗲𝗿𝗺: + therapeutic

𝗶𝗻𝗶𝘁𝗶𝗮𝗹: royle_j
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: royle
𝘁𝗲𝗿𝗺: material medium

𝗳𝗶𝗿𝘀𝘁: + harley_john
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + harley_j
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + harley
𝘁𝗲𝗿𝗺: + include, manual,
preparation, role

𝗳𝗶𝗿𝘀𝘁: + carson_joseph
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + carson_j
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + carson
𝘁𝗲𝗿𝗺: + include, london,
pharmacopoeia, preparation

𝗳𝗶𝗿𝘀𝘁: + alcala_francisco, churchill_john
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + alcala_f, churchill_j
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + alcala, churchill
𝘁𝗲𝗿𝗺: + include, manual,
pharmacopoeia, preparation

𝗳𝗶𝗿𝘀𝘁: + headland_frederick
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + headland_f
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + headland
𝘁𝗲𝗿𝗺: + british pharmacopoeia,
include, manual, preparation

𝘆𝗲𝗮𝗿: + 18671868, 18681869

𝗳𝗶𝗿𝘀𝘁: + england_royal, headland_frederick, kingus_london
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + england_r, headland_f, kingus_l
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + england, headland, kingus
𝘁𝗲𝗿𝗺: + british pharmacopoeia, manual,
many, preparation, therapeutic include

𝗳𝗶𝗿𝘀𝘁: + bookbinder_kelly, headland_frederick, kingus_london
𝗶𝗻𝗶𝘁𝗶𝗮𝗹: + bookbinder_k, headland_f, kingus_l
𝘀𝘂𝗿𝗻𝗮𝗺𝗲: + bookbinder, headland, kingus
𝘁𝗲𝗿𝗺: + london, manual, pharmacopoeia,
preparation, therapeutic include

𝘆𝗲𝗮𝗿: + 18641865, 18651866

𝘆𝗲𝗮𝗿: + 18551856, 18561857

Figure 6: Component referring to ‘Materia Medica’ by J. Forbes Royle – ‘material medium’ is a normalization mistake.

For bigrams, there are around 89M blocks (54M of which are
singletons) for (3a–c) and 91M for (3d), the latter containing 88M
singletons. The three largest blocks contain (3a) 125(32)K / 99(4.2)K
/ 64(2.4)K, (3b) 82(32)K / 64(4.6)K / 43(3.4)K, (3c) 108(32)K / 105(3.2)K
/ 82(4.1)K and (3d) 32K / 17K / 7K representations (in brackets only
observed representations). Apparently, the largest blocks by all rep-
resentations are not necessarily largest without the generalizations.
Upon inspection, the single largest block looks to be the same for
(3a–d). To provide an idea of their content, Figures 7 and 8 show
word clouds for the largest and third largest block in (3a). Figure
6 shows the subset partial order for a small block. It is unlikely
that the data contains thousands of duplicates for the same record.
The two largest blocks using (1b) and (3a) are unfortunate unions
of many smaller components that are connected by many individ-
ual overlaps (minimum elements). For example Figure 7 reveals a
great variance of names, terms and publication years clearly sig-
nalling that the corresponding block does not re�ect duplication.
Here, (2B) can mitigate the damage over (2A), generally increas-
ing precision at the cost of recall by isolating all mentions with
the same overly general representation. However, this does not
directly tackle the largest blocks mentioned above, which consist
of thousands of acceptable representations. For this purpose, we
use the earlier described variants that split any blocks with more
than : representations into one block per representation. Finally,
our task is not to identify actual duplicates, but to separate the data
into reasonably sized chunks of similar or related records so that
as many duplicate pairs as possible lie within. For example it is
�ne if all editions of a book lie within one block, even though one
might not consider them duplicates. Hence, despite its size of 2.4K
distinct observed representations, the third largest block visualized
in Figure 8 looks tightly interrelated given that it contains only
records by two authors, from a few consecutive years and titled
with Cyrillic words.

We evaluate our blocking as a deduplication method, using the
DOI-annotated records available and consider recall to be more
important than precision for the above reasons. Results on [big] are

Figure 7: Oversize block: word clouds (surname, terms, year).

displayed in Figure 9. The most obvious observation is that overly
general representations are better split by mentions in addition
to being isolated from other representations (cf. Figures 9a vs. 9b).
Precision is much better, while recall remains practically the same.
Overall, we can achieve recall between 78–80% identi�ed duplicate
pairs when including suspiciously large gold duplicate groups from
the annotation, improving to 86% when only evaluating against
small (≤ 10) ones. Splitting oversize blocks is also very important
as the great di�erences in variants (colored curves per plot) suggest.
A good balance appears to be the green one (split all blocks with
more than 1k representations). Using title bigrams instead of words
in the representation tends to slightly increase precision and recall.
Generalization schemes (3a) 8281 and (3c) 4261 give the best re-
sults, although it is probably not worth generating two times more
generalizations for about a percentage point higher recall than (3b)
6241. Using no generalizations at all remains an option due to its
much lower overhead, but the e�ect of generalization is visible in
its recall being about 2.5 percentage points lower.

Table 2c compares results of (1b) and (3a) (“poset �elds”) on the
smaller [core] dataset used by Gyawali et al. [11]. Here we have
tried to implement the evaluation measure that they have described
to obtain precision and recall for detection of duplicates and non-
duplicates. The similarity between ours and their reported title
baseline results suggests that the numbers are roughly comparable.
The divergences should also be in part due to the fact that not
all record IDs in [core] could be found in [big] (there was also a
smaller �le corruption in the original CORE dump used for [big]).
Our method is further compared to a simple SimHash baseline,
which however is di�erent from the one used in Gyawali et al. [11].
Our observation is that SimHash is naturally faster than our ap-
proach, however it only �nds extremely similar records and on the
borderline between similar and dissimilar shows some arbitrariness
due to the random distributions inherent to the method. This can be
seen when comparing the performance of using block labels (bloc)
against that of using exact representations, which is practically the
same for SimHash, but clearly di�erent for our method (i.e. a larger

Figure 8: Acceptable block: word clouds (Cyrillic broken).
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(a) Results for (2A) separating overly general representations from others.

(b) Results for (2B) separating overly general representations from others and splitting them into one mention per block.

Figure 9: Blocking results compared. Every colored line corresponds to one method con�guration and shows its performance

in di�erent evaluation scenarios. One column per combination of representation, speci�cation and generalization. One colored

line per oversize-block variant. i.e. maximum size 101 to 105. On the x-axis the lower limit on gold duplicate blocks (by DOI) to

be included in the evaluation, i.e. 101 to 103 (larger values omitted due to no more result changes).

number of di�erent representations are connected into the same
block). Interestingly the character-ngram-based representations do
better when used alone. Our main �nding with this table is that our
method’s performance looks remarkably similar to that reported
for the vector similarity method described by Gyawali et al. [11],
but does not require pairwise comparison and instead processes
more than 1B records in less than a day, even with Python.

When analysing the errors, we are interested in false-positives (as
measured by precision) and false-negatives (as measured by recall).
We can obtain a precision value for each block returned by our
method. We can obtain a recall value for each gold identi�er (DOI)
provided by the dataset. A simple size-based average shows that
lower precision values unsurprisingly occur mostly in the larger
blocks. Small blocks with <10 annotated mentions have an average
precision of >80%. Blocks with >100 annotated mentions have a low
average precision in the single digits, with occasional exceptions
of medium or high precision. This explains the signi�cance of
the maximum-block-size threshold described above. On the other
hand, one might expect the recall to be high for small duplicate
groups and low for larger ones. We do not observe this behavior.
Instead, average recall is 9̃0% for size-2 groups, 8̃0% for size-3, 7̃5%
for size-4 and 71–73% for sizes 5–10. Lowest averages are centered
around size-50 groups while very large groups of sizes >100 have

remarkably high recall of 90–100% with a few exceptions. Looking
at the baseline that uses simply identical representations as blocks,
we �nd that the larger the true duplicate groups, the greater the
contribution of the representations themselves to the recall. This
explains the high recall for large duplicate groups as these seem to
be especially often the result of very similar or identical records.

6.2 Results for Author Mentions

Out of the 171M mentions, we generate (1a) 17.6M distinct rep-
resentations using labelled name parts (‘�elds’), (1b) 16.5M using
unlabelled name parts and (1c) 13.9M with character-ngrams. As
an example, for �elds, the most frequent representation is observed
2.8M times and contains no features at all. The next frequent (29.2K)
corresponds to Y. Wang. The tenth one (18.8K) is for Y. Liu. The
�rst one is not only observed many times, but is also an obvious
case for speci�cation. The same holds for representations that have
only a surname or the �rst letter of it – although these are not
among the most frequent representations. After identifying such
overly general representations, the most frequent unspeci�ed one
remains Y. Wang. Without generalizations, building the bipartite
graph over these (�eld-based) representations and detecting its
connected components takes about 8min on 8 cores.
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poset simhash
base

�elds parts ngrams

36 90 85 86 35 35 100 P

96 59 60 60 64 64 0.8 R

bloc reps bloc reps bloc reps

(a) authors

poset simhash

base�elds parts ngrams

1 �eld threshold 1 part 4 ngrams

1.4 94 1.4 94 1.4 94 94 94 98 98 100 P

99 8 93 8 100 9 9 9 0.2 0.2 0.0 R

bloc reps bloc reps bloc reps bloc reps bloc reps

(b) institutions

poset simhash exact

dupli
92 90 91 91 83 P

77 55 59 59 51 R

nodup
85 75 77 77 75 P

95 96 96 96 93 R

bloc reps bloc reps

(c) publications

Table 2: Results for authors on [auth], institutions on [bfd] and publications on [core].

For �elds there are around 7.2M blocks (4.7M of which are sin-
gletons). The three largest blocks by distinct representations (S.
Lee, J. Lee, S. Kim) contain 5736 / 5726 / 4898 representations.7 See
[backes2022a] for some graph visualizations of author names in
the subset partial order.

Table 2a compares results of (1a) (“poset �elds”) on the [auth]
dataset used in Backes [2], Backes [3] and Backes and Dietze [4].
Our method is compared to our simple SimHash baseline. Our obser-
vation is that SimHash is not useful for blocking author mentions
as it cannot understand the matching logics between author names
(especially without a weighting of the name parts) and only con-
nects the most similar names. This can be seen when comparing
the performance of using block labels (bloc) against that of using
exact representations, which is practically the same for SimHash,
but clearly di�erent for our method (i.e. a larger number of di�erent
representations are connected into the same block). The character-
ngram-based representations by themselves have a higher recall
than name parts, but much lower precision. This should be mostly
due to the limitation of using only the �rst six features in either
case. A more meaningful comparison is between name parts and
labelled name parts, where the latter has clearly higher precision.
When connecting labelled name parts in the subset partial order,
our method increases recall to 96% with considerable loss in pre-
cision, where the latter is to be expected in a coarse blocking as
targeted here. Under ‘base’, is shown the result of treating each
author mention as a separate author, which shows very low recall
and thus underlines the importance of disambiguation. Our main
�nding for author mentions is that when using a large dataset, it
is not necessary to generate the generalizations that are consid-
ered the minimal overlap between potential coreferences – most
of these are already in the data. We have seen this as the results
for all generalization schemes (including generalizing to surname,
�rst initial) were practically the same as not generalizing at all. On
the other hand, for speci�cation, the only reasonable speci�cation
scheme (just as the literature suggests) is surname, �rst initial (c.f.
Backes [3]), as results were very poor in all other cases. In other
words, while it is important to note that our method replicates this
proven baseline when surname, �rst initial is used as maximally
general representations during speci�cation, it does not add any-
thing on top (although it was shown in Backes and Dietze [4] how
the structure can be further exploited for progressive resolution).

As expected, average precision is high for small blocks and gets
much lower with larger suggested blocks. Recall is always very

7This seems to be a combination of popular Asian surnames that are often combined
with various English �rst names. Normally Asian �rst names are also diverse, but
transcription removes many of the more subtle di�erences.

high (almost always over 94%), with a tendency to be even higher
(towards 100%) for large blocks. When using individual represen-
tations instead of blocks, precision is usually very high indepen-
dent of the block size, except that for large block sizes, these may
correspond to single blocks, and those can occasionally have low
precision. Separating by representations instead of blocks, recall is
considerably lower for all sizes (mostly 50–70%) after a sharp drop
over the smallest few block sizes.

6.3 Results for A�liation Strings

Out of the 17M a�liations in [bfd], we generate (1a) 1.1M dis-
tinct representations using a�liation parsing with labels (‘�elds’),
(1b) 961K using unlabelled parts and (1c) 1.9M with character-
ngrams. For (1a) �elds, the most frequent representation is {(UNI,
Munich)} and observed 188K times. The next frequent (177K) is
{(UNI, Heidelberg)}. The tenth one (100K) is {(UNI, Gottingen)}. The
�rst one is actually ambiguous as there are two Universitites in
Munich. Still, these most frequent representations are very rea-
sonable minimal elements that correspond top-level institutions in
the dataset (for example, we have {(UNI, Berlin), (UNI, Free)} and
{(UNI,Berlin),(UNI,Tech)} but no ambiguous {(UNI, Berlin)} under the
most frequent representations). Two major problems have been
noted for the ‘separation’ step in Backes et al. [5]: �rst, there are less
frequent, but overly general representations like {(CLINIC, Univ)}
with 24K mentions. These could potentially be discovered and iso-
lated during speci�cation. Another problem is that even in the real
world, almost all larger research institutions in a country are some-
how connected by joint departments. In addition, some a�liations
might incorrectly reference multiple institutions if the respective
author has provided them in one string. The threshold-based speci-
�cation alternative is quite slow and does not return the desired
results. So speci�cation is a very important and challenging step
for a�liations. In contrast, generalization is not really necessary as
practically all top-level institutions are also used somewhere in the
data as an a�liation. Without generalizations, building the bipar-
tite graph over these (�eld-based) representations and detecting its
connected components takes about 66s for [bfd] on 8 cores. When
we run it on all (unannotated) Web of Science a�liations, this takes
about half an hour.

For (1a) �elds there are around 13.5K blocks (9.6K of which
are singletons). Unfortunately, all but 20K representations are in
the largest block due to the above described high connectivity.
For a�liations, minimum elements are better for separation than
connected components. Backes et al. [5] gives a detailed discussion
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of these issues as well as graph visualizations of a�liations in the
subset partial order.

Table 2b shows top-level institution resolution results using our
method on (1a) labelled (‘�elds’) and (1b) unlabelled (‘parts’) ele-
ments of the a�liation string compared to SimHash on (1b) the
latter as well as on (1c) character-ngrams. Parsed elements of the
a�liation string are quite precise regardless of whether they are
assigned a label or not. Interestingly, character-ngrams have a con-
siderably lower recall, suggesting that the parsing step has already
resolved many coreferent but non-identical a�liation strings. As
before, the used SimHash method does not connect a signi�cant
number of similar representations. As discussed above, the over-
connectedness of the data is apparent in the very low precision
after �nding the connected components with our method.

7 CONCLUSION

In this work, we have motivated, described, implemented and eval-
uated a new blocking approach that embraces the subset partial
order of entity representations to model relationships between
blocking keys that correspond to sets of features rather than simple
strings. Previous work has used blocking-key-equivalences or total
alphabetical orders of blocking keys but these do not accurately
model the matching relationship between the sets of features that
we propose to use as blocking keys or minimal overlaps / su�cient
conditions for equivalent representations. Our approach re�nes and
extends the set of entity representations during the steps representa-
tion, speci�cation and generalization introduced in Backes et al. [5]
before e�ciently building a reduced bipartite version of the subset
partial order over them to �nd connected components. Here we
have proposed a new approach to allow parallel minimal element
search (or partial order production) with con�gurable time/space
tradeo� that is more convenient than previously proposed alterna-
tives. We have further contributed a large scale silver standard for
duplicate detection using automatically cleaned DOI-annotations.
For the additional domains of author disambiguation and a�liation
resolution, we have also experimented with large-scale datasets.
Results are summarized in the following.

For deduplicating publication records, representation e�orts such
as using normalized word-bigrams instead of words can make a
di�erence, where for example the latter helps to increase blocking
precision slightly at no loss of recall and – more importantly –
greatly reduces the size of the largest block. Speci�cation aims at
avoiding the creation of such oversize blocks by isolating overly
general representations either into distinct representations or dis-
tinct mentions. Precision is much better for the latter case, at almost
no loss of recall. Nevertheless, at least two very large blocks remain
that seem to result not from overly general representations but
from an overconnectedness that results from a large number of
minimal elements. Where necessary, the generalization step helps
to moderately increase recall, but the tested schemes increase col-
lection size and processing time by up to one order of magnitude,
raising the question of proportionality. On the other hand, the large
increase in collection size has allowed us to test-proof that con-
nected components can be found within a reasonable time frame of
one day even for more than a Billion representations (see Section
6.1). If a C++ implementation can indeed o�er the expected 10x

speed-up, processing would only take a few hours. Depending on
individual restrictions, our algorithm can be con�gured to use more
or less memory at the expense of processing time. The SimHash
baseline can only �nd the most similar duplicates. Although we
have allowed variations in 7 out of 8 hash-bytes, its recall did not
increase over that of the underlying representations. In other words,
no signi�cant number of similar representations referring to du-
plicate records were grouped. When comparing to the work of
Gyawali et al. [11], it looks as though our method has comparable
performance than their pairwise vector-similarity method, which
is very promising as the latter is clearly infeasible for any larger
collection. While our interpretation of the SimHash methodology
has not produced good results for the annotated data at hand, its
superior speed was noted. The good performance reported in other
publications suggests it can be con�gured to achieve better results.
Hence, further work on comparing the two approaches is necessary.

For author mentions, we have proven experimentally that our
method essentially regresses to the established surname, �rst-initial
baseline for pre-separating author mentions if speci�cation ensures
that no clearly overly general representations with even less fea-
tures remain. Labelled name parts are clearly the best features, also
rendering the application of SimHash futile as it cannot understand
their matching relationships. In other words, specifying any rep-
resentations more general than surname, �rst-initial is the only
reasonable speci�cation scheme. It was shown not to be necessary
to generalize any unobserved surname, �rst-initial combinations
in addition to those that are already in the data. In other words, all
generalization schemes performed practically the same as using
no generalization. Thus, further exploitation of the subset partial
order in Backes and Dietze [4] can be formally stand-alone in that
the connections present in the data establish a su�cient ‘super-
clustering’ on their own. For a�liation strings, we have reproduced
the di�culties observed in Backes et al. [5] and conclude that con-
nected components in this domain su�er in particular from the
true interconnectedness of academic institutions, so that once a
dedicated speci�cation method can identify incorrect representa-
tions to a satisfactory degree, minimal elements (which are also
returned by our algorithm) should be used to de�ne overlapping
blocks (top-level institutions) instead.

Experimental results suggest that in duplicate detection and au-
thor disambiguation, our method o�ers the expected performance
as de�ned by the vector-similarity baseline in Gyawali et al. [11]
and the surname, �rst-initial baseline (cf. Backes [3] and Backes
and Dietze [4]). For top-level institution resolution, our approach
has underscored the challenges imminent in the a�liation data (cf.
Backes et al. [5]), such as di�cult-to-detect underspeci�ed repre-
sentations and actual institutional interconnections. This shows
that our approach not only performs well in the usual domains but
also provides new means for describing persistent di�culties that
can serve as the basis for further improvements in the future.
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8.4 Discussion

8.4.1 Erratum

This version of the paper that had been submitted to VLDB contains an crucial typo

in Section 2.3: Here, the runtime bound is not O(N/ logN), but O(N2/ logN).

8.4.2 Elaboration

A number of visualizations could not be used in the current version of the paper due to

space constraints. They are described in the following.

In Figure 8.1, we display the relationships between different type of sets in the subset

partial order. In our case, each set corresponds to one entity representation. In the

inner circle, we see that each set is either a proper subset or a maximal set, meaning

that maximal sets are those sets that are no proper subsets of any other set, i.e. they

have no proper supersets. In the next circle, we see that the set of all proper subsets

is partitioned further into those that are both subsets and supersets of some other sets,

and those that are only subsets. The set of all maximal sets on the other hand is further

partitioned into those that are not supersets of any other set (in addition to not being

subsets by definition) and those that are supersets. The former are therefore singletons

in the subset relation, i.e. they are not connected to any other representation. We also
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Figure 8.1: Every set that is not a proper superset is minimal. Every set that is not a
proper subset is maximal. Proper subsets can also be proper supersets (’intermediate’
in poset), otherwise they are minimal. Minimal sets need not be proper subsets, in
which case they are ’isolated’ in poset. Blocking generalizations can, but need not be

minimal. Observations can also be minimal. Specifications are isolated.
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see that all of these four partitions are mutually exclusive. In the third circle from the

center, we see that proper supersets are obviously the union of all sets that are only

supersets and all sets that are both sub- and supersets. On the other hand, we see that

minimal sets are the union of all sets that are only subsets and all sets that are neither

sub- nor supersets. We also see that each set is either a proper superset of a minimal set.

In addition to the above general definitions, we also project the different type of sets

as defined in our blocking method into this visualization in the outer circle. Observed

representations can be any type of set described above. Generalizations are proper sub-

sets, where they can be only subsets or both sub- and superset. However, they are only

useful to increase connectivity if they are only subsets, otherwise they can be ignored.

Specifications on the contrary are maximal sets, but specifically those that are neither

sub- nor supersets because we replace the original underspecified representation by one

that contains the representation- or mention-ID. Thereby the respective representations

are isolated because no other mention can have the same ID in its representation. In

theory, it could be possible to specify in a more sophisticated way so that the specifica-

tion could be superset of other representations, or even an acceptable subset of others.

However, this was not done in our work.

Figure 8.2 compares our algorithm for parallel minimal element search (on the left)

against an alternative by Leiserson et al. [2] (on the right). The matrices align potential

subsets and potential supersets. Each cell corresponds to one superset check. Our

approach simply does the superset check for all potential supersets that are larger than

the current potential subset. This creates one iteration for each potential superset size,

starting from 2. Since sets of the same size cannot be proper supersets of each other,

each phase can be partitioned into independent batches that are processed in parallel.

The recursive algorithm by Leiserson et al. [2] on the other hand is more complicated.

Here, both potential subsets and potential supersets are partitioned into batches in the

beginning. First, each batch is compared to itself, looking for minimal elements. Then

batches are merged in pairs (A∩B, C∩D). Now we need to check if the minimal elements

from the individual batches merged have subsets in the other batch, respectively. If not,

they remain as minimal elements of the union. Then we proceed recursively. The

problem is that finding subsets is more expensive than finding supersets and recursive

parallelization is problematic to implement. We had implemented this method, but were

not convinced that it was convenient when trying to use it on our large datasets.

Figure 8.3 simply shows on the left how representations are mapped to a list of features

and on the right how this mapping can be inverted to give all representations that

contain a certain feature. This structure can be used in Boolean retrieval tasks like

finding all supersets of a potential subset as the intersection of the posting lists for all

features in the potential subset. We build such an index for each iteration of our parallel
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minimal element search algorithm. Except for the initial iteration, it is built in parallel

to using the previous index while searching for supersets in that respective iteration.

Table 8.1 gives insights into our duplicate detection silver standard by providing a

histogram over the different publication types retrieved from crossref.org for which

DOI’s are present. Here, we selected only report, monograph, dissertation, book-chapter,

proceedings-article and journal-article. Any records for which the DOI was not found in

both doi.org and crossref.org are also excluded.

In Figure 8.4, we give a visualization of a report from running our minimal element

search algorithm on weighting 4261 in duplicate detection. The overall runtime of the

Python implementation amounted to roughly 20 hours in this case. The green part

is the parallellized computation, so the corresponding bars would be much taller with

only one worker. Getting struct (blue) refers to the inverted index overhead, which is

relatively large for small potential subsets. As can be seen, getting the results from the

results queue takes particularly long for the first patch of one superset size, because here
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Table 8.1: Histogram of crossref types for the distinct DOIs in [big] that doi.org could
resolve. Note that these numbers count duplicate dois only once.

TYPE # TYPE # TYPE #
book-track 1 proceedings 1,163 book 93,042
book-section 3 reference-book 2,538 report 147,567
journal-volume 5 journal 4,062 monograph 157,740
book-set 12 report-series 4,350 dissertation 207,747
book-part 18 other 7,109 book-chapter 644,464
peer-review 22 dataset 8,071 proceedings-article 654,575
proceedings-series 42 reference-entry 11,555 component 1,775,775
book-series 72 journal-issue 14,664 none 3,518,251
standard 73 posted-content 18,589 journal-article 14,542,546
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the smaller potential subsets are queried, which are more likely to have supersets, so

that there are more results for the first patches.

Finally, we have not described in detail how we have obtained the features in the repre-

sentation step. In the core data dump, the authors are given as a list of strings, where

each string corresponds to one author name. Mistakes like “Royal England” are unfor-

tunately included here. If there is a comma in the name string, we split on comma and

take everything before it as surname and the rest as forenames. If there is no comma,

we split on whitespace amd take the last part as surname. In addition, we consider local

prepositions like “de”, “de la” or “van” as indicators of surnames to correct potential

mistakes. Further, we create a database of the frequency of surnames and firstnames in

the core data and exchange firstnames and surname if the supposed surname is more

frequent as a forename and the supposed first forename is more frequent as a surname.

Finally, we normalize to lower case ASCII letters and replace a few no-name terms like

anonymous or unknown by NULL. For the publication year, we take the current year

and add the surrounding years by string concatenation before interpreting the result as

an integer, e.g. with 2000, we get 19992000 and 200020001. Then, if another repre-

sentation is published one year earlier, they still share the feature 19992000. For title

terms or bigrams, we use the following procedure: First, we split the title by indicators

of subtitles, like “:” and each of these parts into sections by stop-words (which are

thus removed). We tokenize each section and normalize the words into ASCII. Then we

look up each word in WordNet and Symspell1. If the word is not known in both, we use

Symspell to suggest the most similar alternative (if similar enough) in order to fix typos.

This sometimes creates different words, especially if the original term was not wrong,

but from a non-English language (e.g. “materia medica” which was changed to “mate-

rial medium” in Figure 6). However since the words are only used for feature-overlap

and the same term will be changed everywhere in the same way, the damage should

be limited. For bigrams, we continue to lemmatize all words that are in the dictionary

after this transformation by the most frequent part-of-speech in WordNet and get the

section-wise word-bigrams. If a section is only of length one (e.g. a word that was sur-

rounded by two stopwords) we take this word instead of a bigram. All the above feature

transformations have the effect of making the representations slightly more general than

if the information were used exactly as given.

8.4.3 Shortcomings and Potential Improvements

The Python implementation of the parallel algorithm for minimal element search is prob-

ably much slower than a good C++ implementation could be. Its performance should

1https://github.com/wolfgarbe/SymSpell
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be much more impressive then. Unfortunately, I do not have the required programming

expertise without considerable learning efforts to acquire them. More problematic is the

Python-related memory waste. The algorithm exploits the fact that the UNIX operating

systems use copy-on-write to copy objects in memory only when they are being modi-

fied. This allows to use the same inverted index from different independent processes as

long as it is not changed. Unfortunately, to detect zero-references that will be dropped,

Python garbage collection keeps object reference counters not in a central registry, but

with each object it creates. This unfortunate design-choice leads to objects being partly

modified by reference. As a result, growing parts of the inverted index are duplicated in

memory, leading to large memory consumption that is a factor of the number of parallel

processes. The only reason this was feasible is because we have only used 8 parallel

processes and because we have an extremely large RAM available, i.e. more than one

TB (!). For proper deployment on very large data, the algorithm should definitely be

translated in a more suitable programming language, like C++.

Another shortcoming is the fact that regardless of the efforts in the specification step,

there are still a small number of very large blocks produced. In previous versions,

these were much larger and we have made considerable improvements in the latest

version. However at least the largest two blocks are resisting breaking up the over-

connectedness. Although evaluation results become very good when simply breaking

them up into individual representations using a maximum block size, this is not a very

satisfying solution as it contradicts the goals we are trying to achieve in the first place

by connecting representations using the subset partial order.

The evaluation could have compared many more alternative blocking methods that

were described in the related work section. However, this would have been extremely

difficult as most of them introduce a plethora of configuration choices and would have

to be re-implemented in most cases. When implementing the SimHash baseline, we

noticed that there is no unique definition of this method meaning that even for this one

method, there are many different variations possible. Therefore, we have relied on using

(a) a non-proprietary large dataset [big] that can be used as a benchmark by others

in the future and a small dataset [core] that has already been used to evaluate a few

alternatives in Gyawali et al. [96]. Due to inconsistencies in their data, we could only

roughly replicate their small dataset, but similar results for the title-baseline suggests

that the two benchmarks are sufficiently similar. Another problem for comparability was

that they have used a very expensive, complicated and unintuitive evaluation measure,

which we can only hope to have properly reproduced from their description. Finally, it

would have been good had we been able to reproduce their reported results because there

are some surprising numbers: They combine SimHash and vector-similarity, where the

former has a precision of roughly 70% and poor recall of 25% (that being consistent with
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our findings) and the latter 91% and 78%, respectively. For some reason, combining the

low-recall SimHash method with the 78% recall vector-similarity method achieves higher

recall of 83%. While this is in theory possible if the returned pairs are complementary

to a larger degree, it seems rather unlikely to assume that a larger portion of the highly

similar SimHash pairs were dissimilar by vector-similarity.

8.4.4 Evaluation

The following datasets were used for evaluation:

big The self-prepared core dataset with roughly 24M annotated and 95M unannotated

records.

core The reproduced dataset from Gyawali et al. [96], using the core-IDs from their

small dataset of aligned duplicates to look up the features [big].

auth The Web of Science author dataset used in Chapters 4, 5 and 6.

bfd The top-level silver-annotated institution dataset maintained at Bielefeld Univer-

sity [97] that was used in Chapter 7.

The main evaluation in this work concerned duplicate detection. Using the generaliza-

tion step, the size of the [big] dataset was increased to over 1B representations for some

configurations. Here we have tested the following method configurations:

1. Representation: (a) words or (b) bigrams

2. Specification: at least one surname and one title term and either another sur-

name, title term or the one author’s first initial, further distinguish (A) isolate by

representation or by (B) mentions.

3. Generalization: Use weightings (a) 8281, (b) 6241, (c) 4261 or (d) none

Results on [big] suggest a good choice is (1b) bigrams, (2B) and modest generalization

(e.g. (3b) 6241) if one takes speed into account – otherwise 8281 gives best results.

Comparing on [core] (Table 2), our best configuration showed performance remarkably

similar to the vector-similarity method results reported by Gyawali et al. [96] (92/77 vs.

91/78), while being feasible for large datasets. For non-duplicate detection, results are

varying a bit more (85/95 vs. 86/99). As the datasets are not exactly identical due to

the inconsistencies on their behalf, it was reassuring to see the exact-title baseline re-

sults being very similar as well (83/51 vs. 83/50). Again non-duplicate results vary more
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(75/93 vs. 71/99), posing the question whether there were unintentional divergences in

the non-duplicate evaluation method. While we do not beat their combined method,

we had some doubts about these reported numbers (see above) and more importantly,

their combined method is clearly infeasible for large-scale blocking as it requires pair-

wise comparison. Our SimHash interpretation is clearly different from theirs (91/59 vs.

70/25), where it should be noted that our version did not connect a significant number

of different representations, as indicated by the reps baseline.

For authors, representation was clearly best with the usual author name parsed com-

ponents (surname, initials, firstnames). For specification, it became also clear (if it was

not already so) that there is no reasonable alternative to using surname and first-initial

as the minimum required features. Generalization turned out to be irrelevant w.r.t. the

results although it could still make sense to also generalize to surname, first-initial in

the cases where such representation is not already in the data, especially if the dataset

is smaller. So for author names, our results clearly support the use of the surname,

first-initial baseline for super-blocking, which can be easily described in our framework.

The fact that no other static blocking scheme presents itself as an alternative while at

the same time we know surname, first-initial is at times too expensive (e.g. Wang, Y)

supports our work in Chapter 6 where each such super-block is progressively processed

further without overloading the clustering method.

For affiliations, we have compared (1a) labelled affiliation string components (fields),

(1b) unlabelled ones (parts) and (1c) character 5-grams (ngrams). During specification,

we generally assume a minimum of 1 field, 1 part or 4 ngrams respectively. However,

as we knew from the work described in Chapter 7 that separation is problematic, we

have also tried using a threshold -based method to detect overly-general representations

that should be specified. Since we knew that the problem is overgeneralization rather

than the opposite, we have not applied a generalization step for affiliations. Our results

suggest that the labelling of affiliation string components (1a) is not useful (although

it was important in the conflation step in Chapter 7) compared to using the string

components as such (1b). The threshold version of generalization did not improve the

poor precision, but it is possible that this was because of actual interconnections of the

institutions. Using SimHash does again not improve over using identical representations

as blocks. Overall, the problems regarding separation of different top-level institutions

as described in Chapter 7 were reproduced and they remain a considerable challenge.





Chapter 9

Conclusion

In this thesis, the entity resolution problem in the context of digital libraries was stud-

ied from different viewpoints to obtain a conceptually sound framework that satisfies

a number of desired properties stated in Chapter 1.2. This chapter first summarizes

the process of developing this approach and obtaining the required findings through

the course of the publications that make up this thesis (Section 9.1). Here we give de-

tails on how the individual works have contributed to incorporate the desired properties

and how individual aspects can be viewed in the light of existing concepts described in

Chapter 2.1. This allows us to repeat the main results of our work by stating how the

desired properties described in the beginning of this thesis were incorporated. Next, we

summarize limitations inherent to our approach and suggest alternative methods that

may be better suited in certain situations (Section 9.2). In addition, for each of the indi-

vidual research projects, open questions and straightforward next steps have remained

as collections of points for future work. Towards the end of the conclusion (Section 9.3),

we stress the main contributions of our work, briefly outlining the formalized solution

proposed in Chapter 2.2 by describing each of the framework’s components in terms of

the central features they introduce and the implications they have for the research field

of entity resolution. Finally, we give some closing remarks in Section 9.4.

159
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9.1 Summary and Main Results

The framework proposed in this thesis is the result of multiple consecutive research

projects, which are summarized in the following.

In the first work, we have studied the problem of author equivalence in a clustering set-

ting. We have implemented a simple agglomerative clustering method based on proba-

bilistic similarities. The result suggested that the probabilistic similarities in conjunction

with agglomerative clustering work well for the task of grouping author mentions describ-

ing the same real-world person, where the most difficult question was when to stop the

agglomerative clustering process. In addition, we have studied properties of the cluster-

ing algorithm’s solution finding process as well as general coherences of evaluating author

names, which has lead to the proposal of evaluating problem size range individually to

control for the most crucial data property on the reported performance. Regarding

pre-clustering partitioning (blocking), we have chosen the surname, all-initials scheme

without evaluating the impact of this decision.

This apparent shortcoming has led to the second work in which we study in detail the

effect of intransitive name-matching and transitive blocking on the performance of au-

thor disambiguation and present a first model to make explicit the relationship between

the two (somewhat incompatible) relations. Here, each name-based representation of an

author mention constitutes the intension of the respective node in the respective sur-

name’s semilattice. Its extension is the mentions represented by it. We have compared

performance of the classic categorization-based blocking schemes to our own methods

that remove edges in the matching-based blocking graph based on different criteria to

obtain smaller connected components to be used as blocks. Except for the surname,

all-initials scheme, the classic blocking methods can also be expressed by removing

edges in this graph. The results suggested that the surname, all-initials baseline is a

good choice in terms of precision and recall as well as expensiveness, but the proposed

entropy-based edge-removal worked also comparatively well. Among others, it was also

found that almost all true equivalences are between matching names, which means that

name-matching can indeed be considered a necessary condition for equivalence, even

if it it certainly not sufficient and its transitive closure inevitably moves a number of

contradictory representations into the same block.

Hence, we have continued to explore the matching-based graph induced by the subset

partial order over mention representations in the third paper, where we have further

refined the formalization as well as the methodology. A major focus in this context

was to embrace the concept of progressive entity resolution. It was identified that in-

stead of removing weak edges in the matching-based blocking graph, adjacent nodes
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representing individual blocks can be successively merged depending on the strength

of the edge weights between them. This creates graph minors by means of edge con-

traction. The partial order of mention representations can be considered a concept

hierarchy over author names and the edge weights are computed in a very similar way

as the confidence measure from association rule learning. The covering relation over

the representations is a way to structure the search space by name-matching. However,

not all matches are necessarily modelled as we only order the observed representations,

which can lead to some missed matches, but allows to avoid the quadratic complexity of

deciding matching by pairwise comparison and the even greater complexity of adding all

possible unobserved representations. For example the matching of John H. Doe and J.

Herbert Doe is only noticed if we also observe J. H. Doe (or a generalization thereof) or

John Herbert Doe (or a specification thereof). A number of different edge-weighting and

edge-weight modification schemes were compared to traditional fixed blocking schemes

by plotting their performance against the number of pairwise comparisons suggested

by them. This revealed a superior efficiency in terms of precision and recall vs. num-

ber of comparisons for the proposed progressive scheme with the preferred variant of

edge-weight modification over traditional fixed schemes.

In the fourth project, we have studied a new type of entity, namely author affiliations to

be grouped into real-world institutions. In addition, we have focused on making use of

the concept hierarchy of affiliation representations such that it approximates the true in-

stitutional hierarchies under the respective top-level institutions, which would allow both

to infer these hierarchies from the data and at the same time to order the observed affil-

iations hierarchically, enabling sub-organizational bibliometric comparisons. Here, the

edge-contraction previously used in the context of progressive resolution is reinterpreted

as a means to merge affiliation representations that describe the same sub-organizational

unit. This project has also helped to further segregate the tasks involved in our approach

into components of a pipeline. We have identified the sub-tasks representation (to cre-

ate meaningful representations), separation (to obtain a more principled super-blocking

previously done by surname, first initial), interpolation (to hypothesize intermediate un-

observed representations if required), collocation (partial order production), conflation

(merging through edge contraction) and evaluation. This division holds not only for the

task of hierarchical affiliation resolution, but for our framework in general. The concrete

results of the project are mixed as some sub-tasks were found to be very difficult due

to challenging deficiencies and variations in the affiliation strings. Error propagation

deteriorates results in later sub-tasks. However the structuring of the problem and the

detailed error analysis have laid a solid foundation for future improvements.

In the fifth and last project, we have focused entirely on the separation problem. Again,
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a new entity type is studied, namely the publication records themselves. The correspond-

ing application is duplicate detection. The proposed method is to find the connected

components (as a means of separation) in the subset partial order of observed men-

tion representations and some of their unobserved generalizations. The latter represent

the minimum required overlap for each observed representation to be considered for

duplicate-verification. The proposed technical algorithm allows parallellization under

consideration of custom space limitations, i.e. runtime can be traded off for memory

consumption. The algorithm detects minimal elements in the subset partial order on

the fly and creates a reduced bipartite graph that links each representation with its

minimal elements, which can then be fed to standard connected component algorithms

in the form of a sparse matrix that requires considerably less space then the full partial

order. Still, the algorithm can also be used to efficiently build the partial order, acting

as a means for partial order production. The main contribution of this last project is to

ensure that our approach can scale to at least one billion entity mentions.

Our proposed framework presents an answer to the research question how a single,

conceptually sound entity resolution framework can integrate all the desired aspects

stated earlier. To this end, we restate beneficial properties of ER methods along with

an explanation on how our approach features them.

Scaling: 1 billion records A parallellized super-blocking algorithm that finds con-

nected components in the subset partial order can be used to separate the data

into smaller subsets without losing any information, as the later steps are also

based on the subset partial order and any mention representations that are not

connected will also not interfere in any way.

Scaling: progressiveness A progressive framework for block merging is deployed with-

in super-blocks. This is particularly important in cases with increased connected-

ness resulting in large super-blocks. Then, only the most promising mention pairs

are compared until the time runs out.

Scaling: avoid pairwise view Although every clustering algorithm performs pairwise

comparison, we ensure that our system’s pair selection process ultimately imple-

ments a modular decomposition of the complete data. The collection is split into

super-blocks, which in turn are split into individual representations. These are

progressively merged to larger blocks and in each iteration each block is clustered

into a number of clusters that represent real world entities. Thereby, we induce

a partitioning by super-blocks, one by blocks and one by clusters. We do not

make any independent assertions for individual mention pairs that might estab-

lish a non-transitive duplicate relation contradicting the transitive property of the

target equivalence relation.
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Scaling: parallellizable The super-blocking algorithm was developed with strict re-

gard to enabling parallelization. This includes the ability of trading off memory

consumption with some additional runtime. On the blocking level, for each it-

eration of the progressive resolution, each super-block would have to be loaded,

blocks be merged and re-clustered. The overhead of these loading operations was

not studied. Developing new parallel clustering methods was not the goal of this

work, but it should be noted that such do indeed exist (e.g. [98]) and present an

interesting opportunity for further parallelization.

Scaling: unsupervised While we have used small classification scenarios in some of

our works to estimate parameters, nowhere do we assume the resolution process

to be a pairwise classification problem. Instead, the modular decomposition of the

collection is driven by different notions of similarity which are theoretically derived

and compared to one-another, rather than obtained from a large parameter space

through supervised learning.

Adaptivity: schema-aware or -agnostic Our approach is built at its very core on

the concept of set-based mention representations (that are ordered by the subset

partial order). These sets can contain attribute-value pairs, where the attributes

may implement a schema, but they can also contain only values, leading to a

schema-unaware method. In fact, values and attribute-value pairs can be mixed

in the same representation, allowing maximal schema-awareness without requiring

this kind of information were it is simply not available.

Adaptivity: model missing values The subset partial order that is at the core of

our approach models exactly the logic of missing values if attribute-value pairs

are used as features. A representation with missing values is a lower bound of a

more complete representation, implementing the fact that the first still matches

the latter by assuming that values missing in one representation could in principle

be the same as the those observed in its supersets.

Adaptivity: model feature-expressiveness Being a key component for adaptivity,

automatic feature weighting on top of feature-sharing is crucial. It is implicitly

used both in the probabilistic cluster similarities (in 1
#(f)) and in the blocking

graph weights, were a representation consisting of general features is more likely

to have many low-weighted specifications and an added rare feature’s higher dis-

criminating power is reflected in a lower edge weight (and the corresponding higher

likelihood of separation) due to the respective representation being less observed.

Adaptivity: embrace world knowledge Our framework allows encoding world knowl-

edge in different components like representation parsing, generalizing observed
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representations or the introduction of unobserved minimal elements to introduce

potential block-defining candidates.

Comprehensiveness: generalize over other approaches Especially in the related

literature chapter, we have pointed out how our approach generalizes other com-

mon approaches. For example blocking keys can be added as hypothesized repre-

sentations that can then be identified as minimal elements to tie together all rep-

resentations that are specifications thereof. Any clustering method can be used in

the clustering step. In the blocking papers, static blocking baselines have been ex-

plained, implemented and compared within in our framework. We have presented

a matrix-view on entity resolution that generalizes most blocking methods, in

particular also our blocking approach by using it to determine the representation-

representation matrix. Finally, we have presented a bipartite graph view on clus-

tering and shown that (our) blocking approach can also be explained in it.

Soundness: model transitivity Using block merging and clustering instead of a pair-

wise view on blocking and/or a pairwise-classification for verification, transitivity

is modelled easily as all intermediate results constitute equivalence relations that

are automatically transitive. The conflict between the intransitive notion of match-

ing and the transitive nature of equivalence has been made explicit in the blocking

graph, which was one of the main motivations for deriving it through the subset

partial order in the first place.

Soundness: identify well-defined sub-problems In the description of our approach,

we have been able to reduce many sub-problems to known basic tasks, mostly in

the domain of graph algorithms. Among them are

• representation parsing

• partial order production

• extremal element search

• connected component search

• strongly connected components

• edge contraction

• graph minors

• modular decomposition

• minimum spanning tree

• transitive reduction

• transitive closure

• agglomerative clustering

Accessibility: simple The entire core of our framework is based on the directed acyclic

graph induced by the subset partial order over mention representations as well as

a small number of operations on this graph (e.g. connected component search,

edge contraction, see above).

Accessibility: modular Although everything is build around this core, the tasks can

be arranged in a pipeline consisting of the components



Chapter 9 Conclusion 165

1.0 (1.0)  |  1.0 (1.0)
first: {freud_sigmund}

initial: {freud_s}
source: {ders}

surname: {freud}
title: {allgemeine,fixierung,neurosenlehre,trauma,unbewusste}

year: {19181919,19191920}

1.

1.0 (1.0)  |  45.0 (45.0)
initial: {freud_s}

surname: {freud}
title: {unbewusste}

.02

1.0 (1.0)  |  1.0 (1.0)
first: {freud_sigmund}

initial: {freud_s}
surname: {freud}

title: {bd,iii,studienausgabe,unbewusste}
year: {19141915,19151916}

1.

4.0 (4.0)  |  13.0 (13.0)
first: {freud_sigmund}

initial: {freud_s}
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year: {19141915,19151916}

.08

2.0 (2.0)  |  8.0 (8.0)
initial: {freud_s}

surname: {freud}
title: {gesammelte,unbewusste,werke}

year: {19141915,19151916}

.25

6.0 (6.0)  |  33.0 (33.0)
initial: {freud_s}

surname: {freud}
title: {unbewusste}
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.24

2.0 (2.0)  |  2.0 (2.0)
initial: {freud_s}
source: {bd,x}
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year: {19141915,19151916}

.25

1.

4.0 (4.0)  |  4.0 (4.0)
initial: {freud_s}

surname: {freud}
title: {gesammelte,unbewusste,vol10,werke}

year: {19141915,19151916}

.5

1.

2.0 (2.0)  |  2.0 (2.0)
initial: {freud_s}

source: {studienausgabe}
surname: {freud}

title: {unbewusste}
year: {19961997,19971998}

1.

.04

3.0 (3.0)  |  3.0 (3.0)
first: {freud_sigmund}

initial: {freud_s}
source: {bd,gesammelte,werke}

surname: {freud}
title: {unbewusste}

year: {19141915,19151916}

1.

.23

4.0 (4.0)  |  7.0 (7.0)
initial: {freud_s}

source: {gesammelte,werke}
surname: {freud}

title: {unbewusste}
year: {19141915,19151916}

.43

2.0 (2.0)  |  2.0 (2.0)
first: {freud_sigmund}

initial: {freud_s}
source: {gw,x}

surname: {freud}
title: {unbewusste}

year: {19141915,19151916}

1.

.15

2.0 (2.0)  |  4.0 (4.0)
initial: {freud_s}

source: {gw}
surname: {freud}

title: {unbewusste}
year: {19141915,19151916}
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1.0 (1.0)  |  1.0 (1.0)
initial: {freud_s}

source: {cit}
surname: {freud}

title: {unbewusste}

.02

1.

1.0 (1.0)  |  1.0 (1.0)
first: {freud_sigmund}

initial: {freud_s}
surname: {freud}

title: {ders,unbewusste}
year: {19911992,19921993}

.02

1.

3.0 (3.0)  |  4.0 (4.0)
initial: {freud_s}

surname: {freud}
title: {unbewusste}

year: {19621963,19631964}

.09

.75

1.0 (1.0)  |  2.0 (2.0)
first: {freud_sigmund}

initial: {freud_s}
source: {ders}

surname: {freud}
title: {unbewusste}

year: {19911992,19921993}

.04

.5

3.0 (3.0)  |  3.0 (3.0)
first: {freud_sigmund}

initial: {freud_s}
source: {bd,studienausgabe}

surname: {freud}
title: {unbewusste}

year: {19141915,19151916}

.23

1.

1.0 (1.0)  |  1.0 (1.0)
initial: {fischer_s,freud_s}
surname: {fischer,freud}

title: {unbewusste}
year: {19621963,19631964}

.25

1.

1.0 (1.0)  |  1.0 (1.0)
first: {freud_sigmund,fritsch_philippe}

initial: {freud_s,fritsch_p}
source: {ders}

surname: {freud,fritsch}
title: {unbewusste}

year: {19911992,19921993}

.5

1.

Figure 9.1: Example of a connected component resulting from a quick application
of our proposed framework to publication references extracted from fulltext PDFs of
the SSOAR repository (https://www.gesis.org/ssoar/home). In contrast to many
other ER approaches, our method allows to show the matching relationships and their

consequences in concise visualizations like this one.

1. representation

2. separation

3. interpolation/generalization

4. collocation

5. conflation (and verification)

6. evaluation

Accessibility: visualizable The blocking graph with its representation nodes can be

visualized well, especially for smaller subsets. It has been shown in different con-

texts how the plotted graph can be used for error analysis and to obtain a better

understanding of the data, the involved logical relationships and the general prob-

lem of matching vs. equivalence. Overall, the graph visualization of the subset

partial order with the option of weighted edges can convey a large amount of in-

formation at one glance (see for example Figure 9.1), which distinguishes it for

example from the usual aggregations over total (alphabetical) orderings used in

other approaches.

https://www.gesis.org/ssoar/home
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9.2 Limitations, Alternatives and Future Work

An advantage of our modular framework is that it allows to address shortcomings by

optimizing individual tasks independently. Such potential improvements are listed as

future work later in this section. First, we shall focus on limitations that are inherent

to our approach in that they cannot be overcome by improving individual modules.

Although some of them may be better modelled by alternative methods, this does not

diminish our proposal’s overall usefulness. In our partial-order-based approach, similar-

ities between entity mentions are always based on discrete notions of set similarity, such

as set containment (i.e. they are defined in an L1 space), which is for example different

for vector-space methods or similarity measures that are defined in higher dimensional

space like Euclidean (L2) distance. Despite modelling logical subsumption, the partial

order does not separate contradictory representations like Jack Doe vs. John Doe if a

generalization like J. Doe is present. This can only be modelled if transitivity is applied

after verification, in which case pairs (John Doe,J. Doe) and (Jack Doe,J. Doe) can

be suggested without including (Jack Doe,John Doe). Typos and other minor string

differences are better discovered by a alphabetical total ordering of the features as for

example in Sorted Neighborhood Blocking. In our approach, these need to be addressed

directly in a normalization preprocessing step or indirectly by generalizing representa-

tions in the hope that the dropped features are the ones with typos or other minor

string differences. Consequently, arguably the main disadvantage of our method is that

it does not consider feature overlaps (only containments) unless they are specifically

generated as hypothetical generalizations beforehand or are already present in the data.

When mentions are represented by large sets of features (e.g. all abstract or fulltext

character n-grams), then all acceptable overlaps cannot be generated as there are too

many of them. In such cases, SimHash is a better solution. SimHash is a faster way

to find very similar representations with many features of the same type and is also

easier to implement. In addition, our method requires some human input for guiding

the feature extraction or designing rules for representation parsing. In general, the

larger and less structured the representations are, the less of a point is there in our

approach’s logic-based modelling through the subset partial order and schema-agnostic

methods like Attribute Cluster Blocking are probably more appropriate. In progressive

edge contraction, the resulting graph minors do not inherently avoid redundant compar-

isons which is in contrast to methods like Progressive Block Scheduling and many others

that propose one pair after the other and compute the transitive closure afterwards (e.g.

with a Union-Find data structure). Progressive edge contraction requires to keep the

semilattices in memory, while other methods like Ordered List of Records require less
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memory to simply suggest the next mention pair to compare. For hierarchical institu-

tion resolution, an entity-linking approach would be more appropriate if the required

gold hierarchies are available. Finally, our approach is not based on machine-learning.

Although our representations essentially constitute conjunctions and the possibility to

add multiple representations or generalizations thereof as keys for each mention allows

to define necessary conditions for equivalence in disjunctive normal forms, we have not

elaborated on whether these could be (better) learned by DNF-learners.

Due to time limitations and the fact that any research work will inevitably produce

further follow-up questions and ideas, this thesis is not comprehensive. In the following,

we list the most important points that have been noted for further consideration in

future work and assign them to the chapters that have given raise to them or where

they best fit content-wise.

9.2.1 Future Work in Clustering

Regarding the clustering step, it would be advisable to develop a faster method than

agglomerative clustering, for example by exploring and pushing the performance limits

of single-link clustering, which is a very fast clustering method and has a number of

convenient properties, like being decomposable into minimal pairwise decisions. When

using agglomerative clustering, it has been shown that the calculation of the stopping

criterion is essential and needs better automatic adaption to individual disambiguation

tasks. Regarding features used for clustering, it is desirable to include word embeddings

into whichever clustering method is used, in order to better model semantic similarity.

Finally, a proper large-scale benchmark is required to allow fair and solid comparison of

various author disambiguation approaches.

9.2.2 Future Work in Matching and Blocking

Despite considerable normalization efforts done by the Web of Science itself, many au-

thor names are not optimally represented, which means that an improved parsing and

normalization step for author names would be useful. In addition, a number of possible

variations could be interpolated for each observed author mention (e.g. add John Doe

when observing Johnathan Doe.
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9.2.3 Future Work in Progressive Blocking

Perhaps the most urgent missing part in the work on progressive author disambiguation

is to test a baseline that simply merges blocks in top-down order, i.e. that first merges the

blocks with the most specific names and then continues with the next most specific ones,

etc. In retrospect, it appears likely that the preferred variant used in the experiments

comes very close to this behavior. Another interesting method to compare to the current

set of variants and baselines would be to use a biased random walk on the blocking graph

using the edge weights as transition probabilities to sample paths that hypothesize block

equivalences. Another important point is to implement a truly parallel progression that

proceeds iteration by iteration through all super-blocks and schedules new blocks to

be clustered without using up an enormous amount of memory and producing an I/O

bottleneck. In this context a possible improvement is to use the progressive nature

of agglomerative clustering to integrate it with the block merging progression in order

to obtain a finer-grained resolution progress. Furthermore, it is important to reduce

the redundancy resulting from constantly re-clustering merged blocks. In this context,

the ec* evaluation x-axis should be swapped against its integral to show not only the

effort required in one iteration, but in all iterations up to this point. Also, a stopping

criterion for when further progression is more or less futile could be developed. Finally,

both dynamicity (clustering/verification results are fed to the next iteration’s blocking

step) and real-time ER (processing a changing collection by updating the results when

mentions are added or removed) would be desirable to achieve a convincing applied

solution.

9.2.4 Future Work in Hierarchy Extraction

As discussed in the respective chapter, our work on hierarchical institution resolution

left a number of open questions and plenty of room for improvement. In particular, the

representation component should be addressed as a proper parsing problem to produce

high quality affiliation representations. World knowledge about real-world institutions

could be included by consulting comprehensive resources like the World Higher Edu-

cation Database and adding top-level representations derived from their names to the

collection together with a number of possible variations, so that observed affiliations

can be better contextualized against this background of known institutions. The in-

terpolation component would benefit from some improved rules that can build on the

more accurate new representations. The most challenging component of conflation could

certainly use an improved pairwise equivalence classifier that determines whether two
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adjacent representations are equivalent. Finally, the evaluation step should be improved

by annotating more gold hierarchies.

9.2.5 Future Work in Connected Components

Although this work was conducted close to the end of the thesis project, we have al-

ready noticed a number of shortcomings that could not be addressed within a reasonable

timeframe (see Chapter 8.4.3). We expect that it would be particularly rewarding to

create a C++ implementation of our algorithm for minimal element search, as that

should be much faster than the current Python code. On the research side, the specifi-

cation and generalization step should attract further attention to improve precision and

recall of duplicate detection and split the remaining oversize blocks. This might also

be achieved by modifications in the representation step, although we see less room for

improvement there, with the exception of language-dependent normalization. It seemed

that the largest blocks in duplicate detection were not due to overly general represen-

tations, but a result of general interconnectedness, similar to the problem in top-level

institution resolution. However, it still needs to be investigated whether for publication

records, this is simply a result of many less obvious cases of overly general minimal

sets, rather than just one or a few. In affiliation resolution, even clearly overly general

representations like UNIV:{Clin} can not yet be reliably detected, so this would be

the first task concerning improvements in this application scenario. However, we would

rather see this as future work of the previous project. Next, the use of minimal ele-

ments to define overlapping blocks could be studied further where affiliation resolution

presents a very interesting test-bed, due to the actual overlays in top-level institutions.

For author disambiguation, this work has simply confirmed what was already assumed

in our respective work described in Chapter 6. Although it would require great effort,

evaluating or approach against more state-of-the-art duplicate detection methods would

be an important contribution. Perhaps the large CORE gold standard created by us

could be used as a benchmark to allow a competition of alternatives without having to

re-implement each. From a more technical point of view it would also be very interesting

to explore further the sparse-matrix-based view on blocking as used in the related work

chapter to generalize all kinds of blocking methods. This would also allow us to better

compare different methods as they essentially constitute parameter variations of this

model. In addition, this would allow us to study a pairwise view on duplicate detection

that is not necessarily transitive (i.e. by observing the filled cells in the output matrix

before applying the transitive closure). From a more application-oriented point of view,

we have to remember that our proposed method is actually just a blocking step for

duplicate detection, so it would be interesting to use an actual definition of duplicates
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and realize detection of the latter. Finally, as a mix between technical challenge and

application-side requirements, it would be very useful to define and implement an algo-

rithm that makes the current blocking method dynamic, i.e. by adding new records to

the right block as they come in, without reprocessing the entire collection.
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9.3 Contributions and Implications

The work described in this thesis is centered around the topic of blocking for Entity

Resolution. Given the studied application scenarios, it can be contextualized particu-

larly well in the research fields of author disambiguation, institutional disambiguation

and duplicate detection. Although there is plenty of literature on blocking techniques

in general and dedicated domain applications in specific, we have still found there to

be gaps in terms of systematic, overarching conceptualizations as well as adequately

modelling missing information in a logically coherent manner. Consequently, we have

addressed these gaps by proposing a number of systematic views on blocking and a new

method of arranging blocking keys in partial orders. Concerning the former, we have

discussed blocking in terms of graph algorithms, matrix operations, logical concepts, in-

formation systems and mathematical abstractions. This includes a bipartite graph view

on clustering and blocking, extremal set search, graph minors through edge-contraction,

a sparse-matrix view, necessary and sufficient conditions for equivalence, rough sets as

well as bounds in continuous/discrete spaces, topology and space partitioning. Con-

cerning the latter, we have developed a modular blocking framework comprised of the

steps representation, specification, generalization, collocation and conflation that can

be integrated with clustering in a progressive way to make it adaptable to requirements

of large-scale collections in different domains. In particular, we have addressed gaps in

understanding

1. ...the clustering process of author disambiguation.

2. ...the relationship between blocking and clustering in author disambiguation.

3. ...the logical relationship between author names.

4. ...progressive blocking opportunities for author disambiguation.

5. ...the nature of affiliation strings particularly concerning institutional hierarchies.

6. ...feasibility and suitability of partial order components for de-duplicating very-

large-scale publication metadata collections.

As highlights of the conducted research can be summarized that our overarching views

on blocking allow for systematic method comparison and re-combination in this field,

improving evaluation, reproducibility, optimization and innovation. Further, our partial

order approach offers a novel, expressive view on key relations that we have proven

successfully applicable particularly in the domain of author disambiguation, but also to

affiliations and publication records.



Chapter 9 Conclusion

The contribution of this thesis lies in the development of a theoretical and implemented

framework for entity resolution with a number of desired properties. The approach

has been guided and evaluated by various experiments during the course of these stud-

ies. The development process has been documented in a sequence of publications that

constitute important milestones, address different application scenarios and focus on in-

dividual sub-problems. In the following, we summarize the mechanics of our approach,

interpreting its individual aspects as our contributions and stating their advantages over

conventional methods to underline their relevance.

In representation, a representation is parsed from the entity mention string, or the

corresponding record. For author disambiguation, this may be based on the author name

information. For (hierarchical) institution resolution, this may be based on the individ-

ual components of the affiliation string corresponding to different institutional functions.

For duplicate detection, any features that indicate record equivalence like title terms or

author names may be used. This means that our approach fosters human-readable entity

representations that can be configured to express exactly the aspects deemed relevant

for the respective domain at hand. As an implication, better understandability, inter-

pretability and domain-adaptivity is now available for entity resolution, which shows

adequate appreciation for domain knowledge and invites the involvement of experts.

In generalization, these observed representations are generalized to possibly unob-

served representations that constitute what is assumed to be a minimal required overlap

for equivalence (a necessary condition). For author names, this may be surname,first-

initial or surname-only, so that representations of author mentions with these com-

monalities end up in the same super-block even if such general representations are not

observed. For (hierarchical) institution resolution, these can be representations of top-

level institutions or those of intermediate hierarchical nodes, where the latter are often

not observed (for example few people would use the faculty-level to state their affiliation,

while both the university, or a specific chair under the faculty are more likely to be found

in the data). For duplicate detection, one may simply drop a number of insignificant

features, or those that are known to experience a lot of variation in the data. General-

ization allows the user to control exactly what are the overlaps necessary to compare two

mentions while also enabling less costly and specific rules through globally configured

feature-dropping schemes. This has the same implications regarding understandability,

interpretability and domain-adaptivity as mentioned for the representation step.

In separation, we compute a relation that links all representations to their minimal el-

ements in the subset partial order. This relation has the same connectivity as the subset

partial order but a lot less edges. In this bipartite graph, connected components can be

computed. Anything that is not connected is also not in the subset partial order and can
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thus be handled separately in the following steps, which improves efficiency and enables

our approach to scale to billion entity mentions. Alternatively, the minimal elements can

be used as blocking keys, so that overlapping blocks are created, each of which consists

of all the specifications of such minimal element. In author disambiguation, we have

assumed minimal elements of surname,first-initial or surname-only, without consulting

the data, because we have assumed any more general representation to be underspecified

to the extend of being unusable. In these cases, the logic of author names results in the

fact that either surnames or surname-first-initial combinations always create a partition-

ing of author names without overlaps. In (hierarchical) institution resolution, we have

separated the data by minimal elements, which were assumed to correspond to top-level

institutions. Duplicate detection was the task where we have opted clearly for connected

components as opposed to minimal elements to obtain super-blocks. Here, they were

also considerably smaller than in the other application scenarios. Oversize blocks be-

come apparent in our method without causing computational problems. Often they are

simply the result of a consequent modelling of the matching relation’s transitive nature

and would also be composed by other block-building methods. Our approach makes the

transitive connectedness of entity representations explicit and visible and thereby avoids

unpleasant surprises later on, when it may otherwise happen that very large blocks lead

to infeasible computational loads or never-ending suggestions of more and more pairs to

compare. As an implication, consequences both rooted in the data and resulting from

the decisions made in the above steps are clearly unveiled in the process of adapting our

approach to a specific application scenario. This avoids disappointing users with unex-

pected follow-up problems when transferring the approach to other contexts and thereby

generally improves reusability of ER methods, which benefits the development of the

entire research field as well as the general advancement of such technology’s application.

In collocation, we simply do partial order production. The algorithm used to detect

minimal elements during separation can also be used to compute the subset partial

order over a set of representations (in our case over a super-block). In addition, the

representations’ observation counts can be used to compute edge weights for the edges

that correspond to the covering relation of the partial order. This step at the core of

our approach is the same procedure for all three application scenarios. To the best

of our knowledge, it is the first suggestion that properly models the logical matching

relationships between entity representations in domains like author disambiguation. As

an implication, better overall results become available, reducing mistakes to more in-

tricate problems rather than trivial inadequacies of the similarity measures used or the

thresholds applied on them. Consequently, work in the ER fields can focus on more

interesting logical and representational problems rather than fine-tuning conventional

similarity-based methods and achieve real gains in knowledge and understanding.
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In progressive merging or conflation many different strategies are possible. What

they have in common is that they perform edge contraction on the covering relation to

obtain a graph minor. This is the same as adding reverse edges in the covering relation

and computing the strongly connected components to obtain the graph’s condensation.

Usually, the edge contraction is done progressively based on the edge weights, where first

all edges are contracted with a weight higher than the threshold and then the threshold

is lowered. In addition, the edge weights might be modified during the progression. In

author disambiguation, we have proposed a number of different edge weight modifica-

tion schemes and evaluated their performance for progressive author disambiguation. In

(hierarchical) institution resolution, we have interpreted the conflation step as a means

to merge equivalent affiliations. In this case, no progression was done, but the weights

were simply binary in the sense that they indicate equivalence or not, so that the re-

sult would be a graph closer to the true institutional hierarchy. In duplicate detection,

conflation corresponds to an additional (optional) step in verifying potential duplicates.

One implication of the fact that our approach lends itself well to this kind of progressive

resolution is that we have been able to present the first progressive blocking method

specifically designed to model the logical relationship between author names in author

disambiguation. In general terms, it is now possible to combine the important paradigm

of progressive resolution with transparent and adequate logical matching relations, en-

abling their application on larger datasets than before.

In clustering, the goal is to take each block yet unprocessed and apply an expensive

clustering method to it that would otherwise be infeasible for larger portions of the data.

Any clustering method can be used here. In author disambiguation, we have seen good

results for agglomerative clustering rather than single-link clustering. In (hierarchical)

institution resolution, this task was completely omitted as it does not offer a way to

improve the hierarchical mapping that we were looking for. In duplicate detection, clus-

tering offers a final third step after separation and conflation for even better avoidance of

false-positives, i.e. higher precision. The additional blocking opportunities contributed

through our approach allow for the application of better and more expensive clustering

methods on smaller and more concise blocks. As an implication, improved resolution

through expensive clustering methods is now attainable for larger datasets than before.
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9.4 Closing

In this thesis, we have studied the task of entity resolution or more specifically, how to

efficiently find the most similar pairs of entity mentions without comparing all mention

pairs. We have established that conventional (hash-based) blocking is limited in mod-

elling intransitive matching relationships while alternative heuristics like alphabetical

order that are sometimes used to progressively suggest pairs make the incorrect assump-

tion that coreference likelihood is approximated by a total ordering. This status quo is

problematic because it bypasses the true logical matching problem and suggests to fine-

tune inherently flawed notions of equivalence likelihood, thereby pushing ER research

into a niche which provides little in the way of actual insights. Our assumptions have

been proven both theoretically (by exposing obvious contradictions) and empirically (by

outperforming traditional methods) over the course of five projects, whereof four have

as of yet been published in top-tier venues. In these, we have overcome the above men-

tioned limitations of traditional approaches by suggesting to arrange entity mentions

in the subset partial order of their set-based representations, which we have found to

be better suited for modelling logical matching relationships. In particular the second

and third project have contributed to the formal elaboration of the partial-order frame-

work, deriving it bottom-up from the logical matching relations between author names,

while the fourth and fifth have contributed further details and solutions for the out-

standing task of separation and the framework’s final modular structure. The first work

has anticipated the requirement for a deeper understanding of the clustering processes

happening inside the blocks returned by the rest of the framework and has contributed

an effective unsupervised clustering method. This research has allowed us to propose a

complete novel ER approach which uniquely combines a large number of beneficial prop-

erties in a modular and easily adaptable framework. Its specification, implementation

and application for real-world scenarios has provided insights into (progressive) cluster-

ing development, matching relationships, matching likelihood, hierarchical relationships

and subset-based connectivity in large datasets. Finally, a number of open questions

and promising next steps could be summarized for each of our framework’s modular

steps and provide exciting opportunities for future work to further exploit, refine and

challenge our suggestions and assumptions.
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